Advertisement

The Mainz Microtron MAMI —Past and future

  • A. Jankowiak
Conference paper

Abstract

The Mainz Microtron MAMI is a cascade of three racetrack microtrons, delivering since 1991 a high-quality 855MeV, 100 µA cw-electron beam for nuclear, hadron and radiation physics experiments. An energy upgrade of this facility to 1.5 GeV by adding a Harmonic Double-Sided Microtron (HDSM) as a fourth stage is well underway and first beam is expected during the first half of 2006. A detailed description of the multiple recirculation scheme with normal conducting accelerator structures, the basis for the reliable operation of MAMI, is given and the historical development from MAMIA to MAMIB is described. The natural advancement to MAMIC by realizing a polytron of the next higher order, the HDSM, is covered in the last section and a first glimpse into the future of MAMI is given.

Keywords

Quadrupole Doublet Return Path Excitation Coil Correction Coil Pole Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Haimson, Linear Accelerators, edited by P.M. Lapostolle, A.L. Septier (Amsterdam, 1970) p. 415.Google Scholar
  2. 2.
    D. Husmann, IEEE Trans. Nucl. Sci. NS-30, No. 4, 3252 (1983).CrossRefADSGoogle Scholar
  3. 3.
    L. Harwood, Proceedings of PAC2003, Portland, OR, USA (2003) p. 586.Google Scholar
  4. 4.
    E.M. Moroz, Sov. Phys. Dokl. 1, 326 (1956).ADSGoogle Scholar
  5. 5.
    A. Roberts, Ann. Phys. (N.Y.) 4, 115 (1958).zbMATHCrossRefADSGoogle Scholar
  6. 6.
    B.H. Wiik et al., Linear Accelerators, edited by P.M. Lapostolle, A.L. Septier (Amsterdam, 1970) p. 553.Google Scholar
  7. 7.
    H. Herminghaus et al., Nucl. Instrum. Methods 138, 1 (1976).CrossRefADSGoogle Scholar
  8. 8.
    H. Herminghaus et al., Nucl. Instrum. Methods 187, 103 (1981).CrossRefADSGoogle Scholar
  9. 9.
    P. Axel et al., IEEE Trans. Nucl. Sci. NS-24, No. 3, 1133 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    O. Hanson, Charlottesville Conference Paper Q (1979).Google Scholar
  11. 11.
    H. Herminghaus et al., Nucl. Instrum. Methods 163, 299 (1979).CrossRefADSGoogle Scholar
  12. 12.
    H. Euteneuer et al., Proceedings of LINAC84, Seeheim, Germany (1984) p. 394.Google Scholar
  13. 13.
    M. Begemann et al., Nucl. Instrum. Methods 201, 287 (1982).CrossRefGoogle Scholar
  14. 14.
    U. Schmidt-Rohr, Die Deutschen Teilchenbeschleuniger (U. Schmidt-Rohr, Heidelberg, 2001) p. 144.Google Scholar
  15. 15.
    H. Euteneuer et al., Proceedings of EPAC88, Rome, Italy (1988) p. 550.Google Scholar
  16. 16.
    H. Euteneuer et al., Proceedings of LINAC92, Ottawa, Canada (1992) p. 356.Google Scholar
  17. 17.
    H.J. Kreidel, PhD Thesis, KPH 12/87, University of Mainz, Mainz, Germany (1987).Google Scholar
  18. 18.
    M. Seidl, Proceedings of EPAC2000, Vienna, Austria (2000) p. 1930.Google Scholar
  19. 19.
    K. Aulenbacher et al., Journal AIP, Vol. 675 (2002) 1088.CrossRefGoogle Scholar
  20. 20.
    H. Steffens PhD Thesis, KPH 01/94, University of Mainz, Mainz, Germany (1994).Google Scholar
  21. 21.
    V.I. Shvedunov et al., Proceedings of EPAC96, Barcelona, Spain (1996) p. 1556.Google Scholar
  22. 22.
    K.H. Kaiser, Proceedings of the Conference on Future Possibilities for Electron Accelerators, Charlottesville, VA, USA (1979) V-1.Google Scholar
  23. 23.
    H. Herminghaus et al., Proceedings of LINAC81, Santa Fe, N.M., USA (1981) p. 260.Google Scholar
  24. 24.
    H. Herminghaus, Nucl. Instrum. Methods A 305, 1 (1991).CrossRefADSGoogle Scholar
  25. 25.
    S. Ratschow, PhD Thesis, KPH 02/00, University of Mainz, Mainz, Germany (2000).Google Scholar
  26. 26.
    A. Jankowiak et al., Proceedings of EPAC02, Paris, France (2002) p. 1085.Google Scholar
  27. 27.
    J. Herrmann et al., Proceedings of PAC99, New York, USA (1999) p. 2915.Google Scholar
  28. 28.
    H. Euteneuer et al., Proceedings of LINAC86, Stanford, CA, USA (1986) p. 508.Google Scholar
  29. 29.
    H. Euteneuer et al., to be published in Proceedings of EPAC06, Edinburgh, GB (2006).Google Scholar
  30. 30.
    H. Euteneuer et al., Proceedings of EPAC00, Vienna, Austria (2000) p. 1954.Google Scholar
  31. 31.
    A. Jankowiak et al., Proceedings of LINAC04, Lübeck, Germany (2004) p. 842.Google Scholar
  32. 32.
    G. Faillon et al., Proceedings of LINAC86, Stanford, CA, USA (1986) p. 122.Google Scholar
  33. 33.
    U. Ludwig-Mertin et al., Proceedings of EPAC98, Stockholm, Sweden (1998) p. 1931.Google Scholar
  34. 34.
    A. Thomas et al., Proceedings of EPAC02, Paris, France (2002) p. 2379.Google Scholar
  35. 35.
    H. Herminghaus, Proceedings of EPAC88, Rome, Italy (1988) p. 1151.Google Scholar
  36. 36.
    M. Seidl et al., Phys. Rev. STAB 5, 062402 (2002).ADSGoogle Scholar
  37. 37.
    F. Hagenbuck et al., Proceedings of EPAC04, Lucerne, Switzerland (2004) p. 1669.Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag 2006

Authors and Affiliations

  • A. Jankowiak
    • 1
  1. 1.Institut für KernphysikUniversität MainzMainzGermany

Personalised recommendations