Skip to main content

Virtual Compton Scattering at MAMI

  • Conference paper
  • First Online:
Many Body Structure of Strongly Interacting Systems
  • 264 Accesses

Abstract

Virtual Compton Scattering (VCS) off the proton is a recent field of investigation of the nucleon structure. VCS at threshold gives access to the Generalized Polarizabilities (GPs) of the proton. The qualities of both the beam and the high-resolution spectrometers available at the Mainz Microtron MAMI allowed us to perform at first such delicate experiments. This paper deals with different experiments dedicated to the GPs measurements. They are realized without and with polarization, below and just above pion threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Olmos de LeĂ³n et al., Eur. Phys. J. A 10, 207 (2001).

    Article  ADS  Google Scholar 

  2. Y.S. Tsai, Phys. Rev. 122, 1898 (1961).

    Article  ADS  Google Scholar 

  3. H. Arenhövel, D. Drechsel, Nucl. Phys. A 233, 153 (1974).

    Article  ADS  Google Scholar 

  4. P.A.M. Guichon, G.Q. Liu, A.W. Thomas, Nucl. Phys. A 591, 606 (1995).

    Article  ADS  Google Scholar 

  5. P.A.M. Guichon, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41, 125 (1998).

    Article  ADS  Google Scholar 

  6. D. Drechsel, G. Knöchlein, A. Metz, S. Scherer, Phys. Rev. C 55, 424 (1997).

    Article  ADS  Google Scholar 

  7. D. Drechsel, G. Knöchlein, A. Yu Korchin, A. Metz, S. Scherer, Phys. Rev. C 57, 941 (1998).

    Article  ADS  Google Scholar 

  8. F.E. Low, Phys. Rev. 110, 974 (1958).

    Article  MATH  ADS  Google Scholar 

  9. G.Q. Liu, A.W. Thomas, P.A.M. Guichon, Austral J. Phys. 49, 905 (1996).

    ADS  Google Scholar 

  10. B. Pasquini, S. Scherer, D. Drechsel, Phys. Rev. C 63, 025205 (2001).

    Article  ADS  Google Scholar 

  11. M. Vanderhaeghen, Phys. Lett. B 368, 13 (1996).

    Article  ADS  Google Scholar 

  12. A. Metz, D. Drechsel, Z. Phys. A 356, 351 (1996); 359, 165 (1997).

    Article  ADS  Google Scholar 

  13. T.R. Hemmert, B.R. Holstein, G. Knöchlein, S. Scherer, Phys. Rev. D 55, 2630 (1997); Phys. Rev. Lett. 79, 22 (1997); T.R. Hemmert, B.R. Holstein, G. Knöchlein, D. Drechsel, Phys. Rev. D 62, 014013 (2000).

    Article  ADS  Google Scholar 

  14. B. Pasquini, M. Gorchtein, A. Metz, M. Vanderhaeghen, Eur. Phys. J. A 11, 185 (2001).

    Article  ADS  Google Scholar 

  15. D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rep. 378, 99 (2003).

    Article  ADS  Google Scholar 

  16. C.W. Kao, M. Vanderhaeghen, Phys. Rev. Lett. 89, 272002 (2002).

    Article  ADS  Google Scholar 

  17. V. Bernard, N. Kaiser, A. Schmidt, U. Meissner, Phys. Lett. B 319, 269 (1993); Z. Phys. A 348, 317 (1994).

    Article  ADS  Google Scholar 

  18. J. Roche et al., Phys. Rev. Lett. 85, 708 (2000).

    Article  ADS  Google Scholar 

  19. G. Laveissiere et al., Phys. Rev. Lett. 93, 122001 (2004).

    Article  ADS  Google Scholar 

  20. J. Shaw, R. Miskimen, MIT-Bates Proposal 97-03, (1997) and P. Bourgeois, PhD Thesis.

    Google Scholar 

  21. K.I. Blomqvist et al., Nucl. Instrum. Methods A 403, 263 (1998).

    Article  ADS  Google Scholar 

  22. G. Höhler, E. Pietarinen, I. Sabba-Stefanescu, F. Borkowski, G.G. Simon, V.H. Walther, R.D. Wendling, Nucl. Phys. B 114, 505 (1976); private communication.

    Article  ADS  Google Scholar 

  23. M. Vanderhaeghen, J.M. Friedrich, D. Lhuillier, D. Marchand, L. Van Hoorebeke, J. Van de Wiele, Phys. Rev. C 62, 025501 (2000).

    Article  ADS  Google Scholar 

  24. P. Janssens, L. Van Hoorebeke et al., to be published in Nucl. Instrum. Methods.

    Google Scholar 

  25. D. Drechsel, O. Hanstein, S.S. Kamalov, L. Tiator, Nucl. Phys. A 645, 145 (1999).

    Article  ADS  Google Scholar 

  26. H. Fonvieille, Proceedings of the Erice School of Nuclear Physics, 26th Course, Prog. Part. Nucl. Phys. 55, 198 (2005) and private communication.

    Article  ADS  Google Scholar 

  27. N.I. Kaloskamis, C.N. Papanicolas, MIT-Bates proposal (1997).

    Google Scholar 

  28. N. d’Hose, H. Merkel, MAMI Proposal (2001).

    Google Scholar 

  29. M. Vanderhaeghen, Phys. Lett. B 402, 243 (1997).

    Article  ADS  Google Scholar 

  30. Th. Pospischil et al., Nucl. Instrum. Methods A 483, 726 (2002).

    Article  ADS  Google Scholar 

  31. C.W. Kao, B. Pasquini, M. Vanderhaeghen, Phys. Rev. D 70, 114004 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

d’Hose, N. (2006). Virtual Compton Scattering at MAMI. In: Arenhövel, H., Backe, H., Drechsel, D., Friedrich, J., Kaiser, KH., Walcher, T. (eds) Many Body Structure of Strongly Interacting Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36754-3_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-36754-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36753-6

  • Online ISBN: 978-3-540-36754-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics