Advertisement

Parity-violating electron scattering at the MAMI facility in Mainz

The strangeness contribution to the form factors of the nucleon
  • F. E. Maas
Conference paper
  • 215 Downloads

Abstract

A measurement of the weak form factor of the proton allows a separation of the strangeness contribution to the electromagnetic form factors. The weak form factor is accessed experimentally by the measurement of a parity violating (PV) asymmetry in the scattering of polarized electrons on unpolarized protons. We performed such measurements with the setup of the A4-experiment at the MAMI accelerator facility in Mainz. The role of strangeness in low energy nonperturbative QCD is discussed. The A4-experiment is presented as well as the results on the strangeness form factors which have been measured at two Q 2-values. The plans for backward angle measurements at the MAMI facility are presented.

Keywords

Form Factor Strange Quark Electromagnetic Form Factor Readout Electronic Hydrogen Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956).CrossRefADSGoogle Scholar
  2. 2.
    C.S. Wu et al., Phys. Rev. 105, 1413 (1957).CrossRefADSGoogle Scholar
  3. 3.
    T.R. Prescott et al., Phys. Lett. B 84, 524 (1979).CrossRefADSGoogle Scholar
  4. 4.
    P.A. Souder et al., Phys. Rev. Lett. 65, 694 (1990).CrossRefADSGoogle Scholar
  5. 5.
    J. Ahrens et al., Bucl. Phys. A 446, 377c (1985).ADSGoogle Scholar
  6. 6.
    S. Kox, D. Lhuillier, F. Maas, J. Van de Wiele (Editors), From Parity Violation to Hadronic Structure and More, Proceedings of PAVI2004, Eur. Phys. J. A 24, s02 (2005).Google Scholar
  7. 7.
    T.R. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model, first paperback edition (with corrections) (Cambridge University Press, Cambridge, 1992).zbMATHCrossRefGoogle Scholar
  8. 8.
    H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).CrossRefADSGoogle Scholar
  9. 9.
    D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).CrossRefADSGoogle Scholar
  10. 10.
    M. Jamin, Phys. Lett. B 538, 71 (2002).CrossRefADSGoogle Scholar
  11. 11.
    M.M. Pavan et al., PiN Newslett. 16, 110 (2002).Google Scholar
  12. 12.
    X.-D. Ji, Phys. Rev. Lett. 74, 1071 (1995).CrossRefADSGoogle Scholar
  13. 13.
    M. Goncharov et al., Phys. Rev. D 64, 112006 (2001).CrossRefADSGoogle Scholar
  14. 14.
    M. Tzanov et al., Nutev neutrino dis., hep-ex/0306035, 2003.Google Scholar
  15. 15.
    M. Glück, E. Reya, A. Vogt. Eur. Phys. J. C 5, 461 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    E. Leader et al., Phys. Rev. D 67, 074017 (2003).CrossRefADSGoogle Scholar
  17. 17.
    D.B. Kaplan et al., Nucl. Phys. B 310, 527 (1988).CrossRefADSGoogle Scholar
  18. 18.
    M.J. Musolf et al., Phys. Rep. 239, 1 (1994).CrossRefADSGoogle Scholar
  19. 19.
    J. Friedrich, Th. Walcher, Eur. Phys. J. A 17, 607 (2003).CrossRefADSGoogle Scholar
  20. 20.
    W.J. Marciano, A. Sirlin, Phys. Rev. D 29, 75 (1984).CrossRefADSGoogle Scholar
  21. 21.
    S. Eidelmann et al., Review of particle properties, Phys. Lett. B 592, 1 (2004).CrossRefADSGoogle Scholar
  22. 22.
    S.-L. Zhu et al., Phys. Rev. D 62, 033008 (2000).CrossRefADSGoogle Scholar
  23. 23.
    G. Küster, H. Arenhövel, Nucl. Phys. A 626, 911 (1997).CrossRefGoogle Scholar
  24. 24.
    K. Aulenbacher et al., Nucl. Instrum. Methods A 391, 498 (1997).CrossRefADSGoogle Scholar
  25. 25.
    M. Seidl et al., High precision beam energy stabilisation of the Mainz microtron MAMI, in Proceedings of the EPAC 2000 (2000) p. 1930.Google Scholar
  26. 26.
    P. Bartsch, Aufbau eines Møeller-Polarimeters für die Drei-Spektrometer-Anlage und Messung der Helizit ätsasymmetrie in der Reaktion p(e,e′p)π 0 im Bereich der Δ-Resonanz, Dissertation Mainz, 2001.Google Scholar
  27. 27.
    F.E. Maas et al., Proceedings of the ICATPP-7 (World Scientific, 2002) p. 758.Google Scholar
  28. 28.
    P. Achenbach et al., Nucl. Instrum. Methods A 465, 318 (2001).CrossRefADSGoogle Scholar
  29. 29.
    F.E. Maas et al., Phys. Rev. Lett. 93, 022002 (2004).CrossRefADSGoogle Scholar
  30. 30.
    F.E. Maas et al., Evidence for strange quark contributions to the nucleon’s form-factors at q 2 = 0.108 (Gev/c) 2, nuclex/0412030, 2004.Google Scholar
  31. 31.
    D.T. Spayde et al., Phys. Lett. B 583, 79 (2004).CrossRefADSGoogle Scholar
  32. 32.
    D.B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2005).CrossRefADSGoogle Scholar
  33. 33.
    R. Lewis et al., Phys. Rev. D 67, 013003 (2003).CrossRefADSGoogle Scholar
  34. 34.
    T.R. Hemmert et al., Phys. Rev. C 60, 045501 (1999).CrossRefADSGoogle Scholar
  35. 35.
    A. Silva et al., Eur. Phys. J. A 22, 481 (2004).CrossRefADSGoogle Scholar
  36. 36.
    V. Lyubovitskij et al., Phys. Rev. C 66, 055204 (2002).CrossRefADSGoogle Scholar
  37. 37.
    H. Weigel et al., Phys. Lett. B 353, 20 (1995).CrossRefADSGoogle Scholar
  38. 38.
    H.-W. Hammer et al., Phys. Rev. C 60, 045204 (1999).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag 2006

Authors and Affiliations

  • F. E. Maas
    • 1
  1. 1.Institut de Physique Nucléaire, CNRS/IN2P3Université de Paris SudOrsay CedexFrance

Personalised recommendations