Skip to main content

Towards Experimental Tests of Quantum Effects in Cytoskeletal Proteins

  • Chapter
The Emerging Physics of Consciousness

Summary

This volume is appropriately titled “The Emerging Physics of Consciousness” and much of it is focused on using some aspect of “quantum weirdness” to solve the problems associated with the phenomenon of consciousness. This is sometimes done in the hope that perhaps the two mysteries will somehow cancel each other through such phenomena as quantum coherence and entanglement or superposition of wave functions.

We are not convinced that such a cancellation can take place. In fact, finding that quantum phenomena are involved in consciousness, what we will call the “quantum consciousness idea” (QCI) (fathered largely by Penrose and Hameroff CHEXX[40, 102, 103]), is likely to confound both mysteries and is of great interest.

In our contribution, we want to emphasize the “merging” part of this volume’s title by pointing out that there is a glaring need for properly controlled and reproducible experimental work if any proposed quantum phenomena in biological matter, let alone consciousness are to be taken seriously.

There are three broad kinds of experiments that one can devise to test hypotheses involving the relevance of quantum effects to the phenomenon of consciousness. The three kinds address three different scale ranges associated roughly with tissueto-cell (1 cm–10 µm), cell-to-protein (10 µm–10 nm) and protein-to-atom (10 nm–1 Å) sizes. Note that we are excluding experiments that aim to detect quantum effects at the “whole human” or even “society” level as these have consistently given either negative results or been plagued by irreproducibility and lack of appropriate controls (e. g. the various extra sensory perception and remote viewing experiments CHEXX[72]).

The consciousness experiments belonging to the tissue-cell scale frequently utilize apparatus such as electroencephalographs (EEG) or magnetic resonance imaging (MRI) to track responses of brains to stimuli. The best example of such is the excellent work undertaken by Christoff Koch’s group at Caltech CHEXX[61] sometimes in collaboration with the late Francis Crick CHEXX[22], tracking the activity of living, conscious human brain neurons involved in visual recognition. These experiments are designed to elucidate the multi- and single-cellular substrate of visual consciousness and awareness and are likely to lead to profound insights into the working human brain. Because of the large spatial and long temporal resolution of these methods, it is unclear whether they can reveal possible underlying quantum behavior (barring some unlikely inconsistency with classical physics such as, for instance, nonlocality of neural firing).

The second size scale that is explored for evidence of quantum behavior related to aspects of consciousness (memory in particular) is that between a cell and a protein. Inspired by QCI, seminal experimental work has been done by Nancy Woolf CHEXX[142, 143] on dendritic expression of MAP-2 in rats and has been followed by significant experiments performed by members of our group on the effects of MAPTAU overexpression on the learning and memory of transgenic Drosophila (summarized in Sect. 4.3). Such attempts are very important to the understanding of the intracellular processes that undoubtedly play a significant role in the emergence of consciousness but it is hard to see how experiments involving tracking the memory phenotypes and intracellular redistribution of proteins can show a direct quantum connection. It seems clear that experimentation at this size scale can at best provide evidence that is “not inconsistent with” and perhaps “suggestive of” the QCI CHEXX[86].

The third scale regime is that of protein-to-atom sizes. It is well understood that at the low end of this scale, quantum effects play a significant role and it is slowly being recognized that even at the level of whole-protein function, quantummechanical (QM) effects may be of paramount importance to biological processes such as, for instance, enzymatic action CHEXX[4] or photosynthesis CHEXX[112].

In what follows, we give a brief overview of our theoretical QED model of microtubules and the extensive experimental work undertaken (belonging to the second and third size scales). We conclude by pointing towards directions of further investigation that can provide direct evidence of quantum effects in the function of biological matter and perhaps consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, G.S. (1984). Phys. Rev. Lett. 53:1732–1742.

    ADS  Google Scholar 

  2. Altewischer, E.T. (2002). Nature 418:304–306.

    ADS  Google Scholar 

  3. Armstrong, J.D., deBelle, J.S., Wang, Z. & Kaiser, K. (1998). Learning & Memory 5:102–114.

    Google Scholar 

  4. Ball, P. (2004). Nature 431:397.

    ADS  Google Scholar 

  5. Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-Iqbal, I. & Wisniewski, H.M. (1989). Brain Res. 477:90–99.

    Google Scholar 

  6. Bardeen, J. (1979). Phys. Rev. Lett. 42:1498–1500.

    ADS  Google Scholar 

  7. Bardeen, J. (1980). Phys. Rev. Lett. 45:1978–1980.

    ADS  Google Scholar 

  8. Bardeen, J. (1990). Physics Today December:25–31.

    Google Scholar 

  9. Bayley, P.P., Sharma, K.K. & Martin, S.R. (1994). In Microtubules, Hyams, J.S., Lloyd, C.W., (eds.) Wiley-Liss, New York: 111–137.

    Google Scholar 

  10. Beck, C.D.O., Scrhoeder, B. & Davis, R.L. (2000). J. Neuroscience 20:2944–2953.

    Google Scholar 

  11. Bednorz, J.G.M. (1988). Rev. Mod. Phys 60:585–600.

    ADS  Google Scholar 

  12. Bernadot, F. (1992). Electrophysics Letters 17:34–44.

    ADS  Google Scholar 

  13. BIAcore, I.B.A.

    Google Scholar 

  14. Brekhovskikh, L.M. (1980). Waves in Layered Media. New York: Academic Press.

    MATH  Google Scholar 

  15. Brion, N.J., Tremp, G. & Octave, N.J. (1999). Am, J Pathol 154:255–270.

    Google Scholar 

  16. Brown, J.A. (1999). University of Alberta, Canada: Edmonton.

    Google Scholar 

  17. Buchanan, R.L.B., S. (1993). Neuron 10:839–850.

    Google Scholar 

  18. Chaudhur, A.R., Tomita, I., Mizuhashi, F., Murata, K. Potenziano, J.L. & Luduena, R.F. (1998). Biochemistry 37(49):17157–17162.

    Google Scholar 

  19. Cheng, Y., Endo, K., Wu, K., Rodan, A.R., Heberlein, U., and Davis, R.L. (2001). Cell 105:757–768.

    Google Scholar 

  20. Coleman, S. (1976). Ann. Phys. 101:239–267.

    ADS  Google Scholar 

  21. Collier, C.P., wong, E.W., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S. & Heath, J.R. (1999). Science 285:391–394.

    Google Scholar 

  22. Crick, F.C., Koch, C., Kreiman, G., and Fried, I (2004). Neurosurgery 55:273–282.

    Google Scholar 

  23. Crittenden, J.R., Skoulakis, E.M.C., Han, K-A., Kalderon, D., and Davis, R.L. (1998). Learning & Memory 5:38–51.

    Google Scholar 

  24. deBelle, S.J.H., M. (1994). Science 263:692–695.

    ADS  Google Scholar 

  25. del Guidice, E., Doglia, S., Milani, M., and Vitiello, G. (1986). Nucl. Phys. B 275:185–195.

    ADS  Google Scholar 

  26. del Guidice, E., Preparata, G., and Vitiello, G. (1988). Phys. Rev. Lett. 61:1085.

    ADS  Google Scholar 

  27. Derycke, V.M., R., Appenzeller, J., and Avouris, Ph. (2001). Nano Lett 1(9):453–456.

    ADS  Google Scholar 

  28. Dias, O.J.C.L., J.P.S. (2001). J. Math. Phys 42:3292–3299.

    MATH  ADS  MathSciNet  Google Scholar 

  29. Diaz, J.F., Pantos, E., Bordas, J., and Andreu, M.J. (1994). J. Mol. Biol. 238:213–225.

    Google Scholar 

  30. Dubnau, J., Grady, L., Kitamoto, T., and Tully, T. (2001). Nature 411:476–480.

    ADS  Google Scholar 

  31. Dustin, P. (1992). Microtubules. Berlin: Springer-Verlag.

    Google Scholar 

  32. Earp, R.L.D., R.E. (1998). Surface Plasmon Resonance in Commercial Biosensors: Applications to Clinical Bioprocesses and Environmental Samples, (ed.) G. Ramsay. New York: John Wiley & Sons Inc.

    Google Scholar 

  33. Flyvberg, H., Holy, T.E., and Leibler, S. (1994). Phys. Rev. Lett. 73(17):2372–2375.

    ADS  Google Scholar 

  34. Fröhlich, H. (1986). Bioelectrochemistry, (ed.) F.K. Guttman, New York: Plenum Press.

    Google Scholar 

  35. Garcia, M.L.C. (2001). Current Opinion in Cell Biology 13:41–48.

    Google Scholar 

  36. Gilson, M.K.H. (1986). Biopolymers 25:2097–2119.

    Google Scholar 

  37. Gisin, N.P. (1993). J. Phys, A. 26:2233–2239.

    ADS  MathSciNet  Google Scholar 

  38. Grutner, G. (1994). Density Waves in Solids. Vol. Advanced Book Program. 1994, Reading, Mass: Addison-Wesley Publication Co.

    Google Scholar 

  39. Hameroff, S.R. (1974). Am. J. Clin. Med. 2:163–173.

    Google Scholar 

  40. Hameroff, S.R. (1998). Toxicology Letters 100–101:31–39.

    Google Scholar 

  41. Harcoche, S.R. (1994). Cavity Quantum Electrodynamics, (ed.) P. Berman. New York: Academic Press.

    Google Scholar 

  42. Hedestrand, G. (1929). J. Phys. Chem. B2:428–438.

    Google Scholar 

  43. Heidary, G.F., M. (2001). Mech. Development 108:171–178.

    Google Scholar 

  44. Himmler, A. (1989). Mol. Cell. Biol. 9:1389–1396.

    Google Scholar 

  45. Himmler, A., Drechsel, D., Kirschner, M.W., and Martin, J.D.W. (1989). Mol. Cell. Biol. 9:1381–1388.

    Google Scholar 

  46. Hirokawa, N., Shiomura, Y., and Okabe. S. (1988). J. Cell Biol. 107:1449–1459.

    Google Scholar 

  47. Hutton, M., Lewis, J., dickson, D., Yen, S-H., and McGowan, E. (2001). Trends in Mol. Medicine 7:467–470.

    Google Scholar 

  48. Hyman, A.A., Chretien, D., Arnal, I., and Wade, R.H. (1995). J. Cell Biol. 128(1/2):117–125.

    Google Scholar 

  49. Jackson, J.D. (1999). Classical Electrodynamics. 3rd edn. 1999, New York: John Wiley & Sons Inc.

    MATH  Google Scholar 

  50. Jackson, G.R., Wiedau-Pazos, M., Wagle, N., Brown, C.A., Massachi, S., and Geschwind, D.H. (2002). Neuron 43:409–519.

    Google Scholar 

  51. Jacobs, M. (1979). In Microtubules, K.H. Roberts, J.S., (ed.). 1979, Academic Press: London.

    Google Scholar 

  52. Jelinek, F., Pokorny, J., Saroch, J., Trkal, V., Hasek, J., and Palan, B. (1999). Bioelectrochemistry and Bioenergetics 48:261–266.

    Google Scholar 

  53. Jibu, M., Hagan, S., Hameroff, S.R., Pribram, K., and Yasue, K. (1994). Biosystems 32:195–214.

    Google Scholar 

  54. Jobs, E., Wolf, D.E., and Fylvbjerg, H. (1997). Phys. Rev. Lett. 29(3):519–522.

    ADS  Google Scholar 

  55. Jones, T.C., Wu, X., Simpson, C.R. Jr., Clayhold, J.A., and McCarten, J.P. (2000). Phys. Rev. B 61:10066–10075.

    ADS  Google Scholar 

  56. Jorgenson, R.C., Jung, C., Yee, S.S., and Burgess, L.W. (1993). Sensors and Actuators B13–14:721–722.

    Google Scholar 

  57. Julsgaard, B., Kozhekin, A., and Polzik, E. (2001). Nature 413:400–412.

    ADS  Google Scholar 

  58. Kielpinski, D., Meyer, V., Rowe, M.A., Sackett, C.A., Itano, W.M., Monroe, C., and Wineland, W.M. (2001). Science 291:1013–1033.

    ADS  Google Scholar 

  59. Kirkwood, J.G. (1939). J. Chem. Phys. 7:911–919.

    ADS  Google Scholar 

  60. Kirkwood, J.G. (1939). J. Phys. Chem. 7:919–924.

    Google Scholar 

  61. Koch, C. (2004). Current Biology 14:497–97.

    Google Scholar 

  62. Koruga, D.L. (1985). Ann. NY Acad. Sci 466:953–957.

    ADS  Google Scholar 

  63. Kozhuma, T., Dennison, C., McFarlane, W., Nakashima, S., Kitagawa, T., Inoue, T., Kai, Y., Nishio, N., Shidara, S., Suzuki, S. & Sykes, A.G. (1999). J. Biol. Chem 270:25733–25738.

    Google Scholar 

  64. Kretschmann, E., Z. (1971). Physik 241:313–324.

    ADS  Google Scholar 

  65. Krive, I.V.R., A.S. (1985). Solid State Commun. 55:691–694.

    ADS  Google Scholar 

  66. Kwiat, p., Matle, P., Weirfurter, P., and Zeilinger, K. (1996). Phys. Rev. Lett. 75:4337–4343.

    ADS  Google Scholar 

  67. Lal, P. (1985). Phys. Lett. 111(A):389–400.

    Google Scholar 

  68. Latyshev, y.I., Laborde, O., Monceau, P., and Kaumunzer, S. (1997). Phys. Rev. Lett. 78:919–922.

    ADS  Google Scholar 

  69. Laughlin, R.B.P. (2000). Proc. Nat. Acad. Sci, USA 97:28–31.

    ADS  MathSciNet  Google Scholar 

  70. Lee, V., Goedert, M., and Trojanowski, J.Q. (2001). Ann. Rev. Neuroscience 24:1121–1159.

    Google Scholar 

  71. Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Paul-Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W.L., Yen, S.H., Dickson, D.W., Davies, P., and Hutton, M. (2000). Nat. Genet. 1:127–158.

    Google Scholar 

  72. Lilienfeld, S., O. (1999). Skeptical Inquirer Magazine Online, Nov/Dec.

    Google Scholar 

  73. Liliom, K., Wagner, G., Pacz, A., Vascante, M., Kovacs, J., and Ovadi, J. (2000). Eur. J. Biochem. 267:4731–4739.

    Google Scholar 

  74. Lioubimov, V., Kolomenski, A.A., Mershin, A., Nanopoulos, D.V., and Schuessler, H.A. (2004). Applied Optics 43(17).

    Google Scholar 

  75. Lofas, S., Johnsson, B., Edstrom, Al. Hansson, A., Lindquist, G., Muller, H., and Stigh, L. (1995). Biosensors and Bioelectronics 10:813–822.

    Google Scholar 

  76. Luduena, R.F. (1998). Int. Rev. Cytol. 178:207–275.

    Article  Google Scholar 

  77. Maki, K. (1977). Phys. Rev. Lett. 39:46–48.

    ADS  Google Scholar 

  78. Matsubara, K., Kawata, S., and Minami, S. (1988). Applied Optics 27:1160–1163.

    Article  ADS  Google Scholar 

  79. Mavromatos, N.E., Nanopoulos, D.V., and Zioutas, K. (1998). Advances in Structural Biology 5:127–137.

    Google Scholar 

  80. Mavromatos, N.E.N. and Nanopoulos, D.V. (1998). Int. J. of Mod. Physics B B12:517–527.

    ADS  Google Scholar 

  81. Mavromatos, N.E., Mershin, A., and Nanopoulos, D.V. (2002). Int. J. of Mod. Physics B 16(24):3623–3642.

    ADS  Google Scholar 

  82. Mavromatos, N.E. (1999). Bioelectrochemistry and Bioenergetics 48:100–123.

    Google Scholar 

  83. McGuire, S.E., Le, P.T., and Davis, R.L. (2001). Science 293:1330–1333.

    ADS  Google Scholar 

  84. Melendez, J., Carr, R., Bartholomew, D.U., Kukanskis, K., Elkind, J., Yeee, S., Furlong, C., and Woodbury, R. (1996). Sensors and Actuators B35:1–5.

    Google Scholar 

  85. Melki, R., Carlier, M.F., and Pantaloni, D., and Timasheff, S.N. (1989). Biochemistry 28:9143–9152.

    Google Scholar 

  86. Mershin, A., Pavlopoulos, E., Fitch, O., Braden, B.C., Nanopoulos, D.V., and Skoulakis, E.M.C.S. (2004). Learning & Memory 11(2):277–287.

    Google Scholar 

  87. Mershin, A., Kolomenskii, A.A., Schuessler, H.A., Nanopoulos, D.V. (2004). Biosystems 77:73–85.

    Google Scholar 

  88. Mershin, A., Nanopoulos, D.V., and Skoulakis, E.M.C.S. (1999). Proceedings of the Academy of Athens 74:123–173.

    Google Scholar 

  89. Miller, J.H.J., Ordonez, C., and Prodan, E. (2000). Phys. Rev. Lett. 84:1555–1558.

    ADS  Google Scholar 

  90. Miller, J.H.J., Richard, J., Tucker, J.R., and Brandeen, J. (1983). Phys. Rev. Lett. 51:1592–1595.

    ADS  Google Scholar 

  91. Miller, J.H.J., Thorne, R.E., Lyons, W.G., Tucker, J.R. (1985). Phys. Rev. B. 31:5229–5243.

    ADS  Google Scholar 

  92. Miller, J.H.J., Cardenas, G., Garcia-Perez, A., More, W., and Beckwith, A.W. (2003). J. Phys A:Math Gen. 36:9209–9221.

    ADS  Google Scholar 

  93. Mitchison, J.K., M.W. (1984). Nature 312:237–242.

    ADS  Google Scholar 

  94. Mitchison, J. (1997). Annu. Rev. Cell. Dev. Biol 13:83–117, 99–100.

    Google Scholar 

  95. Mori, H. (1989). Biochemical and Biophysical Research Communications 159(3):1221–1226.

    Google Scholar 

  96. Nanopoulos, D.V. (1995). October 4–8, 1994, invited talk at the “Physics Without Frontiers Four Seas Conference”, Trieste, Italy, June 25–July 1, 1995. also in, XV Brazilian National Meeting on Particles and Fields. 1995. Angra dos Reis, Brazil. http://xxx.lanl.gov/abs/hep-ph/9505374.

    Google Scholar 

  97. Nogales, E., Whittaker, M., Milligan, R.A., and Downing, K.H. (1999). Cell 96:79–88.

    Google Scholar 

  98. Nogales, E., Wolf, S.G., and Downing, K.H. (1998). Nature 291:199–203.

    ADS  Google Scholar 

  99. Novak, M. (1999). PNAS (USA) 88:5837–5841.

    ADS  MathSciNet  Google Scholar 

  100. Oberparleiter, B.W., P. (2001). Phys. Rev. A 64:23–28.

    Google Scholar 

  101. Otwinowski, M., Paul, R., and Laidlaw, W.G. (1988). Phys. Lett. A. 128:483.

    ADS  MathSciNet  Google Scholar 

  102. Penrose, R. (1989). The Emperor’s New Mind. 1st edn., Oxford: Oxford University Press.

    Google Scholar 

  103. Penrose, R. (1994). Shadows of the Mind. Oxford: Oxford University Press.

    Google Scholar 

  104. Pereira, A.k., A. & Peng, A. (1992). Phys. Rev. Lett. 68:3663–3666.

    ADS  Google Scholar 

  105. Peterlinz, K.A. (1996). Optics Communications 130:260.

    ADS  Google Scholar 

  106. Philip, N., Acevedo, S., and Skoulakis, E.M.C. (2001). J. Neuroscience 21:8417–8425.

    Google Scholar 

  107. Pokorny, J., Jelinek, F, and Trkal, V. (1998). Bioelectrochemistry and Bioenergetics 45:239–245.

    Google Scholar 

  108. Pokorny, J. (1999). Bioelectrochemistry and Bioenergetics 48:267–271.

    Google Scholar 

  109. Quillin, M.L.M. (2000). Acta Crystallogr. D Biol. Crystallogr. 56(7):791–794.

    Google Scholar 

  110. Raether, H. (1988). Springer Tracts in Modern Physics 111. New York: Springer-Verlag.

    Google Scholar 

  111. Rauschenbeutel, E. (2000). Science 288:2024–2028.

    ADS  Google Scholar 

  112. Ritz, T., Damjanovic, A., and Schulten, K. (2002). Chem. Phys. Chem. 3:243–248.

    Google Scholar 

  113. Ross, J.H., Jr., Wang, Z., and Slichter, C.P. (1986). Phys. Rev. Lett. 56:663–666.

    ADS  Google Scholar 

  114. Ross, J.H., Jr., Wang, Z., and Slichter, C.P. (1990). Phys. Rev. B. 41:2722–2734.

    ADS  Google Scholar 

  115. Sackett, D.L. (1995). In Subcellular Biochemistry, B.B.R. Biswas, S., (ed.). Plenum Press: New York.

    Google Scholar 

  116. Sackett, L. (2000). Nature 404:256–259.

    ADS  Google Scholar 

  117. Samal, S.G., K.E. (2001). Chemical Communications:2224–2225.

    Google Scholar 

  118. Sanchez-Mondragon, J.J., Narozhny, N.B., and Eberly, J.H. (1983). Phys. Rev. Lett. 51:550–560.

    ADS  Google Scholar 

  119. Sataric, M.V., Tuszynski, J.A., and Zakula, R.B. (1993). Physical Review E 48(1):589–597.

    ADS  Google Scholar 

  120. Sataric, M.V., Zekovic, S., Tuszynski, J.A., and Pokorny, J. (1998). Phys. Rev. E 58:6333–6340.

    ADS  Google Scholar 

  121. Schlag, E.W., Sheu, S-Y., Yang, D-Y., Sezle, H.L., and Lin, S.H. (2000). PNAS (USA) 97:1068–1072.

    ADS  Google Scholar 

  122. Schuessler, H.A., Mershin, A., Kolomenskii, A.A., and Nanopoulos, D.V. (2003). J. Modern Optics 50(15–17):2381–2391.

    ADS  Google Scholar 

  123. Scully, M.O.Z., S. (2001). PNAS (USA) 98(17):9490–9493.

    MATH  ADS  MathSciNet  Google Scholar 

  124. Skoulakis, E.M.C.K., D., and Davis, R.L. (1993). Neuron 11:197–208.

    Google Scholar 

  125. Skoulakis, E.M.C.D., R.L. (1996). Neuron 17:931–944.

    Google Scholar 

  126. Song, K.-H.Z., W-J. (2001). Physics Letters A 290:214–218.

    MATH  ADS  Google Scholar 

  127. Stebbins, H.H., C. (1982). Cell. Tissue Res. 227:609–617.

    Google Scholar 

  128. Stenberg, E., Persson, B., Roos, H., and Urbaniczky, C. (1991). Journal of Colloid and Interface Science 143:513–526.

    Google Scholar 

  129. Tegmark, M., (2000). Phys. Rev. E 61:4194–42000.

    ADS  Google Scholar 

  130. Thorne, R.E., Miller, J.H. Jr., Lyons, W.G., Lyding, J.W., and Tucker, J.R. (1985). Phys. Rev. Lett. 55:1006–1009.

    ADS  Google Scholar 

  131. Togerson, T., Branning, S., Monken, M., and Mandel, A. (1995). Phys. Lett. A. 204:323–328.

    ADS  Google Scholar 

  132. Tong, C., Kolomenskii, A.A., Lioubimov, V.A., Muthuchamy, M., Schuessler, H.A., Trache, A., and Granger, H. (2001). Biochemistry 40:13915–13924.

    Google Scholar 

  133. Tsue, Y.F., Y. (1991). Prog. Theor. Phys. 86:469.

    ADS  MathSciNet  Google Scholar 

  134. Tully, T.Q., W. (1985). J. Comp. Physiol. 157:263–277.

    Google Scholar 

  135. Van Buren, V., Odde, D.J., and Cassimeris, L. (2002). PNAS (USA) 99: 6035–6040.

    ADS  Google Scholar 

  136. Van Gent, J., Lambeck, P.V., Kreuvel, J.J.M, Gerritsma, G.J., Sudhoelter, E.J.R., Reunhoudt, D.N., and Popma, T.J.A. (1990). Applied Optics 29:2843–2849.

    ADS  Google Scholar 

  137. Vater, W., Bohm, K.J., and Unger, E. (1997). Cell Mobility and the Cytoskeleton 36:76–83.

    Google Scholar 

  138. Vogel, G. (1998). Science 280:123.

    Google Scholar 

  139. Weinkauf, R., Schanen, P., Yang, D., Soukara, S., and Schlag, E.W. (1995). J. Phys. Chem. 99:11255–11265.

    Google Scholar 

  140. Weisenberg, R.C. (1981). Cell Motility 1:485–498.

    Google Scholar 

  141. Wittman, C.W., Wszolek, M.F., Shulman, J.M., Salvaterra, P.M., Lewis, J., Hutton, M., and Feany, M.B. (2001). Science 293:711–714.

    Google Scholar 

  142. Woolf, N.J., Young, S.L., Johnson, G.V.W., and Fanselow, M.S. (1994). Neuro Report 5:1045–1048.

    Google Scholar 

  143. Woolf, N.J., Zinnerman, M.D., and Johnson, G.V. (1999). Brain Res. 821(1):241–249.

    Google Scholar 

  144. Wouternsen, H.B. (1999). Nature 402:507–510.

    ADS  Google Scholar 

  145. Zettl, A.G., G. (1984). Phys. Rev. B. 29:755–767.

    ADS  Google Scholar 

  146. Zhang, S. (2003). Nature Biotechnology 21(10):1171–1178.

    Google Scholar 

  147. Zurek, W.H. (1991). Physics Today 44(10):36–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mershin, A. et al. (2006). Towards Experimental Tests of Quantum Effects in Cytoskeletal Proteins. In: Tuszynski, J.A. (eds) The Emerging Physics of Consciousness. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36723-3_4

Download citation

Publish with us

Policies and ethics