Skip to main content

Consciousness and Logic in a Quantum-Computing Universe

  • Chapter
Book cover The Emerging Physics of Consciousness

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Summary

The early inflationary universe can be described in terms of quantum information. More specifically, the inflationary universe can be viewed as a superposed state of quantum registers. Actually, during inflation, one can speak of a quantum superposition of universes. At the end of inflation, only one universe is selected, by a mechanism called self-reduction, which is consistent with Penrose’s objective reduction (OR) model. The quantum gravity threshold of (OR) is reached at the end of inflation, and corresponds to a superposed state of 109 quantum registers. This is also the number of superposed tubulins — qubits in our brain, which undergo the Penrose-Hameroff orchestrated objective reduction, (Orch OR), leading to a conscious event. Then, an analogy naturally arises between the very early quantum-computing universe, and our mind. In fact, we argue that at the end of in- flation, the universe underwent a cosmic conscious event, the so-called “Big Wow”, which acted as an imprinting for the future minds to come, with future modes of computation, consciousness and logic. The postinflationary universe organized itself as a cellular automaton (CA) with two computational modes: quantum and classical, like the two conformations assumed by the cellular automaton of tubulins in our brain, as in Hameroff’s model. In the quantum configuration, the universe quantum-evaluates recursive functions, which are the laws of physics in their most abstract form. To do so in a very efficient way, the universe uses, as subroutines, black holes - quantum computers and quantum minds, which operate in parallel. The outcomes of the overall quantum computation are the universals, the attributes of things in themselves. These universals are partially obtained also by the quantum minds, and are endowed with subjective meaning. The units of the subjective universals are qualia, which are strictly related to the (virtual) existence of Planckian black holes. Further, we consider two aspects of the quantum mind, which are not algorithmic in the usual sense: the self, and mathematical intuition. The self is due to a reversible self-measurement of a quantum state of superposed tubulins. Mathematical intuition is due to the paraconsistent logic of the internal observer in a quantum-computing universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashteakar, A., Baez, J., Corichi, A., Krasnov, K. (1998). Phys. Rev. Lett. 80:904

    Article  MathSciNet  ADS  Google Scholar 

  2. Battilotti, G. To be published in International Journal of Quantum Information.

    Google Scholar 

  3. Battilotti, G., and Zizzi, P. “Logical Interpretation of a Reversible Measurement in Quantum Computing”.

    Google Scholar 

  4. Birkoff, G., von Neumann, J. (1936). Annals of Mathematics 37:823–843.

    Article  MathSciNet  Google Scholar 

  5. Bose, S.N. (1924). Z. Phys. 26: 178; A. Einstein (1924). Sitz. Ber. Preuss. Akad. Wiss (Berlin) 22:261.

    Article  ADS  Google Scholar 

  6. Brassard, G., Broadbent, A., Tapp, A. (2005). Foundations of Physics 35:1877

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brouwer, L.E.J. (1905). In: Collected works Vol. 1:1. (ed.) Heyting and Freudenthal.

    Google Scholar 

  8. Chalmers, D. (1995). Journal of Consciousness Studies, and in: Toward a Science of Consciousness — The First Tucson Discussions and debates, (eds.) S. Hameroff, A. Kaszniak, A. Scott, MIT Press, Cambridge, MA:5–28, also available online, at: http://www.Starlab.org/

    Google Scholar 

  9. Chalmers, D. (1996). The Conscious Mind — In Search of a Fundamental Theory, Oxford University Press, New York.

    MATH  Google Scholar 

  10. Churchland, P.S. (1986). Neurophilosophy: Toward a Unified Science of the Mind-Brain, Cambridge, MA, MIT Press.

    Google Scholar 

  11. Churchland, P.S. (1998). In: Toward a Science of Consciousness II-The Second Tucson Discussions and Debates, (eds.) S. Hameroff, A. Kaszniak, A. Scott, MIT Press. Cambridge, MA: MIT Press, (1996)

    Google Scholar 

  12. Dalla Chiara, M.L., Giuntini, R., Leporini, R. Quantum Computational Logics. A survey. http://arXiv.org/abs/quant-ph/0305029

    Google Scholar 

  13. Dennett, D.C. (1988). In: Consciousness in Contemporary Science. Oxford: Oxford University Press.

    Google Scholar 

  14. Deutsch, D., Ekert, A., Lupacchini, R.. Machines, Logic and quantum Physics.. http://arXiv:math.HO/9911150v1

    Google Scholar 

  15. Deutsch, D. (2003). Proc. Sixth Int. Conf. on Quantum Communication, Measurement and Computing, Rinton Press, Princeton, NJ.

    Google Scholar 

  16. Deutsch, D. (2002). Proc. Royal Soc. A458:2911–23.

    Article  MathSciNet  ADS  Google Scholar 

  17. Everett, III, H. (1957). Rev. of Modern Phys. Vol. 29:454–462.

    Article  MathSciNet  ADS  Google Scholar 

  18. Girard, J-Y. (1987). Theor. Computer Sc. 50:1–102.

    Article  MATH  MathSciNet  Google Scholar 

  19. Globus, G. (1995). Psyche, 2(12), August.

    Google Scholar 

  20. Goedel, K. (1931). Monatshefte für Mathematik und Physik, 38:173–198. Translated in van Heijenoort, (1971). From Frege to Gödel. HarvardUniversity Press.

    Article  MATH  Google Scholar 

  21. Guth, A. (1998). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins, Perseus Publishing.

    Google Scholar 

  22. Hameroff, S. (1997). In: Geometry and the foundations of Science: Contributions from an Oxford Conference Honouring Roger Penrose. OxfordUniversity Press.

    Google Scholar 

  23. Hameroff, S., and Penrose, R. (1996). In: Toward a Science of Consciousness — The First Tucson Discussions and Debates, (eds.) S. Hameroff, A. Kaszniak, and A. Scott. MIT Press, Cambridge, MA.

    Google Scholar 

  24. Hameroff, S., and Penrose, R. (1996). Journal of Consciousness Studies 3 1:36–53.

    Google Scholar 

  25. Hesse, H. (1943). Des Glasperlenspiel, Fretz&Wasmuth, Zurich.

    Google Scholar 

  26. ’t Hooft, G. Dimensional reduction in quantum gravity. In Salamfestschrift: a collection of talks, World Scientific Series in 20th Century Physics, vol. 4, ed. A. Ali, J. Ellis and S. Randjbar-Daemi (World Scientific, 1993), THU-93/26, gr-qc/9310026.

    Google Scholar 

  27. ’t Hooft, G. The Holographic Principle, Opening Lecture, in Basics and Highlights in Fundamental Physics, The Subnuclear series, Vol. 37, World Scientific, 2001 (Erice, August 1999), A. Zichichi, ed., pp. 72–100, SPIN-2000/06, hep-th/0003004.

    Google Scholar 

  28. Kauffman, S. Available online at: http://www.santafe.edu/sfi/People/kauffman/lecture-7.html

    Google Scholar 

  29. Leibniz, G.W. (1768), Opera Omnia, 6 volumes, Louis Dutens, (ed.) Geneva.

    Google Scholar 

  30. Levine, J. (1983). Pacific Philosophical Quarterly 64:354–361.

    Google Scholar 

  31. Lewis, C.I. (1929). Mind and the World Order. New York: C. Scribers’s & Sons.

    Google Scholar 

  32. Linde, A. (1983). Phys. Lett. 129B:177.

    MathSciNet  ADS  Google Scholar 

  33. Madore, J. (1992). Classical and Quantum Gravity 9:69–87.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. McGinn, C. (1995). Journal of Consciousness Studies 2:220–230.

    Google Scholar 

  35. Mermin, N.D. (1998). Pramana 51:549–565.

    Article  ADS  Google Scholar 

  36. Penrose, R. (1989). The Emperor’s New Mind, Oxford University Press, Oxford, UK.

    Google Scholar 

  37. Penrose, R. (1994). Shadows of the Mind, Oxford University Press, Oxford, UK.

    Google Scholar 

  38. Penrose, R. (1971). In: Quantum Theory and Beyond, (ed.) T. Bastin, Cambridge University Press:875.

    Google Scholar 

  39. Rovelli, C. and Smolin, L. (1995). Phys. Rev. D52:5743.

    MathSciNet  ADS  Google Scholar 

  40. Sambin, G., Battilotti, G., and Faggian, C. (2000). The Journal of Symbolic Logic 65:979–1013.

    Article  MATH  MathSciNet  Google Scholar 

  41. Shimony, A. (1993). Search for a Naturalistic World View-Volume II. Natural Science and Metaphysics. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  42. Spinoza, B. (1677). Ethica in Opera quotque reperta sunt. 3rd edn, (eds.) J. van Vloten and J.P.N. Land, Netherlands: Den Haag.

    Google Scholar 

  43. Stapp, H.P. (1995). Psyche 2:5.

    Google Scholar 

  44. Stapp, H.P. (1993). Mind, Matter, and Quantum Mechanics, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  45. van Stigt, W.P. (1990). Brouwer’s Intuitionism, Amsterdam: North-Holland.

    MATH  Google Scholar 

  46. Susskind, L. (1995). J.Math.Phys. 36:6377–6396

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. von Neumann, J. (1996). Theory of Self-Reproducing Automata, University of Illinois Press, Illinois.

    Google Scholar 

  48. Wheeler, J.A. (1962). Geometrodynamics, Academic Press, New York.

    MATH  Google Scholar 

  49. Whitehead, A.N. (1929). Process and Reality, Macmillan, New York.

    MATH  Google Scholar 

  50. Wooters, W.K. and Zurek, W.H. (1982). Nature 299:802–819.

    Article  ADS  Google Scholar 

  51. Zimmermann, R. (2003). Conference Human Approaches to the Universe. An Interdisciplinary perspective., Helsinki.

    Google Scholar 

  52. Zizzi, P.A. (1999). International Journal of Transport Phenomena Vol. 38, N 9:2333–2348.

    MATH  MathSciNet  Google Scholar 

  53. Zizzi, P.A. (2000). Entropy (2):39–69.

    Article  MATH  ADS  Google Scholar 

  54. Zizzi, P.A. (2003). NeuroQuantology 3:285–301.

    Google Scholar 

  55. Zizzi, P.A. (2004). “Computability at the Planck scale”. Talk given at Foundations of quantum mechanics Cesena, Italy, 4–9 October, 2004. Forthcoming paper.

    Google Scholar 

  56. Zizzi, P.A. To appear in International Journal of Quantum Information.

    Google Scholar 

  57. Zizzi, P.A. (2005). Mod.Phys.Lett A20:645–653.

    MathSciNet  ADS  Google Scholar 

  58. Zizzi, P.A. “Spacetime at the Planck Scale: The quantum Computer View”. http://arXiv.org/gr-qc/0304032

    Google Scholar 

  59. Zizzi, P.A. “Ultimate Internets”. http://arXiv.org/gr-qc/0110122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zizzi, P. (2006). Consciousness and Logic in a Quantum-Computing Universe. In: Tuszynski, J.A. (eds) The Emerging Physics of Consciousness. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36723-3_14

Download citation

Publish with us

Policies and ethics