Skip to main content

Evolving Symbolic Controllers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2611))

Abstract

The idea of symbolic controllers tries to bridge the gap between the top-down manual design of the controller architecture, as advocated in Brooks’ subsumption architecture, and the bottom-up designerfree approach that is now standard within the Evolutionary Robotics community. The designer provides a set of elementary behavior, and evolution is given the goal of assembling them to solve complex tasks. Two experiments are presented, demonstrating the efficiency and showing the recursiveness of this approach. In particular, the sensitivity with respect to the proposed elementary behaviors, and the robustness w.r.t. generalization of the resulting controllers are studied in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Bentley, editor. Evolutionary Design by Computers. Morgan Kaufman Publishers Inc., 1999.

    Google Scholar 

  2. R. A. Brooks. A robust layered control system for a mobile robot. Journal of Robotics and Automation, 2(1):14–23, 1986.

    Google Scholar 

  3. R. A. Brooks. How to build complete creatures rather than isolated cognitive simulators. In Kurt VanLehn, editor, Architectures for Intelligence: The 22nd Carnegie Mellon Symp. on Cognition, pages 225–239. Lawrence Erlbaum Associates, 1991.

    Google Scholar 

  4. R. Dawkins. The blind watchmaker. Norton, W. W. and Company, 1988.

    Google Scholar 

  5. D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile robot. IEEE Transactions on Systems, Man, and Cybernetics, 26:396–407, 1994.

    Google Scholar 

  6. I. Harvey. The Artificial Evolution of Adaptive Behaviour. PhD thesis, University of Sussex, 1993.

    Google Scholar 

  7. M. Humphrys.Action Selection Methods Using Reinforcement Learning. PhD thesis, University of Cambridge, 1997.

    Google Scholar 

  8. Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

    Google Scholar 

  9. M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolving objects: a general purpose evolutionary computation library. In P. Collet et al., editors, Artificial Evolution’01, pages 229–241. Springer Verlag, LNCS 2310, 2002.

    Chapter  Google Scholar 

  10. P. Maes. The dynamics of action selection. In Proceedings of the 11th International Joint Conference on Artificial Intelligence, 1989.

    Google Scholar 

  11. J.R. Millan, D. Posenato, and E. Dedieu. Continuous-action Q-learning. Machine Learning Journal, 49(23):247–265, 2002.

    Article  MATH  Google Scholar 

  12. S. Nol. and D. Floreano. How co-evolution can enhance the adaptive power of artificial evolution: implications for evolutionary robotics. In P. Husbands and J.A. Meyer, editors, Proceedings of EvoRobot98, pages 22–38. Springer Verlag, 1998.

    Google Scholar 

  13. S. Nol. and D. Floreano. Evolutionary Robotics. MIT Press, 2000.

    Google Scholar 

  14. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-York, 1981. 1995-2nd edition.

    MATH  Google Scholar 

  15. R.S. Sutton and A. G. Barto. Reinforcement learning. MIT Press, 1998.

    Google Scholar 

  16. E. Tuci, I. Harvey, and M. Quinn. Evolving integrated controllers for autonomous learning robots using dynamic neural networks. In B. Hallam et al., editor, Proc. of SAB’02. MIT Press, 2002.

    Google Scholar 

  17. V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

    Google Scholar 

  18. B.M. Yamauchi and R.D. Beer. Integrating reactive, sequential, and learning behavior using dynamical neural network. In D. Cli. et al., editor, Proc. SAB’94. MIT Press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godzik, N., Schoenauer, M., Sebag, M. (2003). Evolving Symbolic Controllers. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-36605-9_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00976-4

  • Online ISBN: 978-3-540-36605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics