On Two Approaches to Image Processing Algorithm Design for Binary Images Using GP

  • Marcos I. Quintana
  • Riccardo Poli
  • Ela Claridge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)


In this paper we describe and compare two different approaches to design image processing algorithms for binary images using Genetic Programming (GP). The first approach is based on the use of mathematical morphology primitives. The second is based on Sub- Machine-Code GP: a technique to speed up and extend GP based on the idea of exploiting the internal parallelism of sequential CPUs. In both cases the objective is to find programs which can transform binary images of a certain kind into other binary images containing just a particular characteristic of interest. In particular, here we focus on the extraction of three different features in music sheets.


Genetic Programming Binary Image Mathematical Morphology Image Processing Algorithm Goal Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tackett, W.A.: Genetic programming for feature discovery and image discrimination. In Forrest, S., ed.: Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, University of Illinois at Urbana-Champaign, Morgan Kaufmann (1993) 303–309Google Scholar
  2. [2]
    Daida, J.M., Hommes, J.D., Ross, S.J., Vesecky, J.F.: Extracting curvilinear features from SAR images of arctic ice: Algorithm discovery using the genetic programming paradigm. In Stein, T., ed.: Proceedings of IEEE International Geoscience and Remote Sensing, Florence, Italy, IEEE Press (1995) 673–675Google Scholar
  3. [3]
    Poli, R.: Genetic programming for image analysis. In Koza, J.R., Goldberg, D.E., Fogel, D.B., eds.: Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, MIT Press (1996) 363–368Google Scholar
  4. [4]
    Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators. In Angeline, P.J., Kinnear, Jr., K.E., eds.: Advances in Genetic Programming 2. MIT Press, Cambridge, MA, USA (1996) 45–68Google Scholar
  5. [5]
    Howard, D., Roberts, S.C., Brankin, R.: Target detection in SAR imagery by genetic programming. In Koza, J.R., ed.: Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA,Stanford University Bookstore (1998)Google Scholar
  6. [6]
    Ebner, M., Zell, A.: Evolving a task specific image operator. In Poli, R., Voigt, H.M., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C., eds.: Evolutionary Image Analysis, Signal Processing and Telecommunications: First European Workshop, EvoIASP'99 and EuroEcTel’99. Volume 1596 of LNCS., Goteborg, Sweden, Springer-Verlag (1999) 74–89Google Scholar
  7. [7]
    Koza, J.R.: Genetic programming: On the programming of computers by natural selection. MIT Press, Cambridge, Mass. (1992)zbMATHGoogle Scholar
  8. [8]
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press (1982)Google Scholar
  9. [9]
    Yoda, I., Yamamoto, K., Yamada, H.: Automatic acquisition of hierarchical mathematical morphology procedures by genetic algorithms. Image and Vision Computing 17 (1999) 749–760CrossRefGoogle Scholar
  10. [10]
    Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In Spector, L., Langdon, W.B., O’Reilly, U.M., Angeline, P.J., eds.: Advances in Genetic Programming 3. MIT Press, Cambridge, MA, USA (1999) 301–323Google Scholar
  11. [11]
    Poli, R.: Sub-machine-code GP: New results and extensions. In Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C., eds.: Genetic Programming, Proceedings of EuroGP’99. Volume 1598 of LNCS., Goteborg, Sweden, Springer-Verlag (1999) 65–82Google Scholar
  12. [12]
    Adorni, G., Cagnoni, S., Gori, M., Mordonini, M.: Efficient low-resolution character recognition using sub-machine-code genetic programming. In: WILF 2001. (2002) In press.Google Scholar
  13. [13]
    Adorni, G., Cagnoni, S., Mordonini, M.: Efficient low-level vision program design using sub-machine-code genetic programming. Workshop sulla Percezione e Visione nelle Macchine, available at (2002)
  14. [14]
    Adorni, G., Cagnoni, S.: Design of explicitly or implicitly parallel low-resolution character recognition algorithms by means of genetic programming. In R., R., M., K., Ovaska, S., Furuhashi, T., F., H., eds.: Soft Computing and Industry: Recent Applications. (Proc. 6th Online Conference on Soft Computing), Springer (2002) 387–398Google Scholar
  15. [15]
    Quintana, M.I., Poli, R., Claridge, E.: Genetic programming for mathematical morphology algorithm design on binary images. In Sasikumar, M., Hegde, J.J., Kavitha, M., eds.: Proceedings of the International Conference KBCS-2002, Mumbai, India, Vikas (2002) 161–170Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marcos I. Quintana
    • 1
  • Riccardo Poli
    • 2
  • Ela Claridge
    • 1
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.Department of Computer ScienceUniversity of EssexColchesterUK

Personalised recommendations