Hybrid Evolution Strategy-Downhill Simplex Algorithm for Inverse Light Scattering Problems

  • Demetrio Macías
  • Gustavo Olague
  • Eugenio R. Méndez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)


The rough surface inverse scattering problem is approached with a combination of evolutionary strategies and the simplex method. The surface, assumed one-dimensional and perfectly conducting, is represented using spline curves. Starting from rigorously calculated far-field angle-resolved scattered intensity data, we search for the optimum pro- file using the evolutionary strategies (μ/ρ+,λ). After a fixed number of iterations, the best surface is finally recovered with the downhill simplex method. Aspects of the convergence and lack of uniqueness of the solution are discussed.


Control Point Simplex Method Scattered Intensity Local Search Algorithm Object Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, (Pergamon Press, London, 1963), p. 29.zbMATHGoogle Scholar
  2. 2.
    J. A. Oglivy, Theory of wave scattering from random rough surfaces, (Institute of Physics Publishing, Bristol, 1991), p. 277.Google Scholar
  3. 3.
    Wombel, R. J., DeSanto, J. A.: Reconstruction of rough-surface profiles with the Kirchhoff approximation, J. Opt. Soc. Am. A 8, 1892, (1991).CrossRefGoogle Scholar
  4. 4.
    Quartel, J. C., Sheppard, C. J. R.: Surface reconstruction using an algorithm based on confocal imaging, J. Modern Optics 43, 496, (1996).Google Scholar
  5. 5.
    Macías, D., Méndez, E. R., Ruiz-Cortés, V.: Inverse scattering with a wavefront matching algorithm, J. Opt. Soc. Am. A 19, 2064, (2002).CrossRefGoogle Scholar
  6. 6.
    Macías, D., Olague, G., Méndez, E. R.: Surface profile reconstruction from scattered intensity data using evolutionary strategies, in Applications of Evolutionary Computing, S. Cagnoni, et. el, eds., (Springer LNCS2279, Berlin), 233, (2002).CrossRefGoogle Scholar
  7. 7.
    Thorsos, E. I.: The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum, J. Acoust. Soc. Amer. 83, 78 (1988).CrossRefGoogle Scholar
  8. 8.
    Maradudin, A. A., Michel, T., McGurn, A. R., Méndez, E. R.: Enhanced backscattering of light from a random grating, Ann. Phys. (N. Y.) 203, 255 (1990).CrossRefGoogle Scholar
  9. 9.
    Nelder, J., Mead, R.: A simplex method for function optimization Computer Journal, 7, 308,(1965).zbMATHGoogle Scholar
  10. 10.
    Boor, C. de: A Practical Guide to Splines, (Springer-Verlag, NY, 1978), p.154.Google Scholar
  11. 11.
    Boor, C. de: Spline Basics, In: Handbook of Computer Aided Geometric Design, G. E. Farin, J. Hoschek and M. Kim (eds.), Elsevier, pp. 141–164, (2002).Google Scholar
  12. 12.
    Cox, M. G.: The numerical evaluation of B-splines, J. Inst. Math. Applics., 10,134, (1972).zbMATHCrossRefGoogle Scholar
  13. 13.
    Boor, C. de: On calculating with B-splines, J. Approx. Theory,6, 50,(1972).zbMATHCrossRefGoogle Scholar
  14. 14.
    H. P. Schwefel, Evolution and Optimum Seeking, (John Wiley & Sons Inc., NY, 1995), p. 444.Google Scholar
  15. 15.
    H. G. Beyer, The Theory of Evolution Strategies, (Springer-Verlag, Berlin, 2001), p.380.Google Scholar
  16. 16.
    Th. Bäck, U. Hammel and H.-P. Schwefel: Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3–17, 1997.CrossRefGoogle Scholar
  17. 17.
    Press, W. H. (editor) Numerical Recipes in Fortran, (Cambridge University Press, Cambridge, 1992) p. 402.zbMATHGoogle Scholar
  18. 18.
    Macías, D., Méndez, E. R.: Unpublished work (2001).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Demetrio Macías
    • 1
  • Gustavo Olague
    • 1
  • Eugenio R. Méndez
    • 1
  1. 1.División de Física AplicadaCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMéxico

Personalised recommendations