Mobile Robot Sensor Fusion Using Flies

  • Amine M. Boumaza
  • Jean Louchet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)


The “Fly algorithm” is a fast artificial evolution-based image processing technique. Previous work has shown how to process stereo image sequences and use the evolving population of “flies” as a continuously updated representation of the scene for obstacle avoidance in a mobile robot. In this paper, we show that it is possible to use several sensors providing independent information sources on the surrounding scene and the robot’s position, and fuse them through the introduction of corresponding additional terms into the fitness function. This sensor fusion technique keeps the main properties of the fly algorithm: asynchronous processing. no low-level image pre-processing or costly image segmentation, fast reaction to new events in the scene. Simulation test results are presented.


Harmonic Function Mobile Robot Obstacle Avoidance Sensor Fusion Ultrasonic Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Louchet. From Hough to Darwin: an individual evolutionary strategy applied to artificial vision. In Proceedings of Artificial Evolution 99, Dunkerque, France, November 1999.Google Scholar
  2. 2.
    P. Collet, E. Lutton, F. Raynal, and M. Schoenauer. Individual gp: an alternative viewpoint for the resolution of complex problems. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honovar, M. Jakiela, and R. E. Smith, editors, Genetic and Evolutionary Computation Conference GECCO99. Morgan Kaufmann, San Francisco, CA, 1999.Google Scholar
  3. 3.
    Amine M. Boumaza and Jean Louchet. Dynamic flies: Using real-time parisian evolution in robotics. In Egbert J. W. Boers, Stefano Cagnoni, Jens Gottlieb, Emma Hart, Pier Luca Lanzi, Gunther R. Raidl, Robert E. Smith, and Harald Tijink, editors, Applications of Evolutionary Computing, volume 2037 of LNCS, pages 288–297, Lake Como, Italy, 18 April 2001. Springer-Verlag.CrossRefGoogle Scholar
  4. 4.
    R.C. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw-Hill, New York, 1994.Google Scholar
  5. 5.
    R. M. Haralick. Using perspective transformations in scene analysis. Computer Graphics and Image Processing, (13):191–221, 1980.CrossRefGoogle Scholar
  6. 6.
    R. C. Gonzalez and R. E. Woods. Digital Image Processing. Wiley, 1992.Google Scholar
  7. 7.
    J. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan Press Press, 1975.Google Scholar
  8. 8.
    Jean Louchet, Maud Guyon, Marie-Jeanne Lesot, and Amine Boumaza. Dynamic flies: a new pattern recognition tool applied to stereo sequence processing. Pattern recognition letters, 23:335–345, 2002.zbMATHCrossRefGoogle Scholar
  9. 9.
    O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1):90–99, Spring 1986.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile robot navigation. In Procedings of the IEEE Conference On Robotics and Automation, ICRA’91, pages 1398–1404, Sacramento, California, April 7–12 1991.Google Scholar
  11. 11.
    C. I. Connolly and R. Grupen. On the applications of harmonic functions to robotics. Journal of Robotic and Systems, 10(7):931–946, October 1993.zbMATHCrossRefGoogle Scholar
  12. 12.
    C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using laplace’s equation. In The Proceedings of IEEE Internetioal Conference on Robotics and Automation, ICRA’90, pages 2102–2106, May 1990.Google Scholar
  13. 13.
    B. H. Horn. Robot Vision. McGraw Hill, 1986.Google Scholar
  14. 14.
    Cumuli project: Computational understanding of multiple images,
  15. 15.
    J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.Google Scholar
  16. 16.
    D. E. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading, MA, 1989.Google Scholar
  17. 17.
    D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, 1982.Google Scholar
  18. 18.
    R. C. Eberhart and J. A. Kennedy. New optimizer using particle swarm. In Proc. Sixth Int. Symposium on Micro Machine and Human Science, Nagoya, pages 39–43, Piscataway, NJ, 1995. IEEE Service Center.Google Scholar
  19. 19.
    P. V. C. Hough. Method and means of recognizing complex patterns. U.S. Patent no3, 069 654, 18 December 1962.Google Scholar
  20. 20.
    J. Louchet. Using an individual evolution strategy for stereovision. Genetic Programming and Evolvable Machines. Kluwer, to appear, 2001.Google Scholar
  21. 21.
    E. Lutton and P. Martinez. A genetic algorithm for the detection of d geometric primitives in images. In The Proceedings of the International Conference on Pattern Recognition, ICPR’94, pages 526–528, Los Alamitos, CA, October 9–13 1994. IEEE Computer Society.Google Scholar
  22. 22.
    M. C. Martins and H. P. Moravec. Robot evidence grid. Technical report, The Robotics Institute, Carnegie Mellon University, March 1996.Google Scholar
  23. 23.
    M. Millonas. Swarms, phase transitions and collective intelligence, artificial life iii. In C.G Langton, editor, Santa Fe Institute Studies in the Sciences of Complexity, volume XVII. Addison Wesley, Reading, MA, 1994.Google Scholar
  24. 24.
    I. Rechenberg. Evolution strategy. In J.M. Zurada, R.J. MarksII, and C.J. Robinson, editors, Computational Intelligence imitating life, pages 147–159. IEEE Press, Piscataway, NJ, 1994.Google Scholar
  25. 25.
    G. Roth and M. D. Levine. Geometric primitive extraction using genetic algorithm. In Proceedings of the IEEE Conference on Computer vision ans Pattern Recognition, CVPR’92, Piscataway, NJ, 1992. IEEE Press.Google Scholar
  26. 26.
    R. Salomon and P. Eggenberger. Adaptation on the evolutionary time scale: a working hypothesis and basic experiments. In Springer Lecture Notes on Computer Science, number 1363, pages 251–262. Springer-Verlag, Berlin, 1997.Google Scholar
  27. 27.
    P.K. Ser, S. Clifford, T. Choy, and W.C. Siu. Genetic algorithm for the extraction of nonanalytic objects from multiple dimensional parameter space. Computer Vision and Image Understanding, vol. 73 no. 1, Academic Press: Orlando, FL, pages 1–13,1999.Google Scholar
  28. 28.
    C. K. Tang and G. Medioni. Integrated surface, curve and junction inference from sparse 3-d data sets. In ICCV98, pages 818–823, Piscataway, NJ, 1998. IEEE Computer Society Press.Google Scholar
  29. 29.
    John S. Zelek. Complete real-time path planning during sensor-based discovery. In IEEE/RSJ International Conference on Intelligent Robots and systems, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Amine M. Boumaza
    • 1
  • Jean Louchet
    • 1
    • 2
  1. 1.projet FRACTALESINRIALe Chesnay cedexFrance
  2. 2.ENSTAParis cedex 15France

Personalised recommendations