Applying Memetic Algorithms to the Analysis of Microarray Data

  • Carlos Cotta
  • Alexandre Mendes
  • Vinícius Garcia
  • Paulo França
  • Pablo Moscato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)


This work deals with the application of Memetic Algorithms to the Microarray Gene Ordering problem, a NP-hard problem with strong implications in Medicine and Biology. It consists in ordering a set of genes, grouping together the ones with similar behavior. We propose a MA, and evaluate the influence of several features, such as the intensity of local searches and the utilization of multiple populations, in the performance of the MA. We also analyze the impact of different objective functions on the general aspect of the solutions. The instances used for experimentation are extracted from the literature and represent real biological systems.


Local Search Microarray Data Window Size Memetic Algorithm Island Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Alba. Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters, 82(1):7–13, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A.A. Alizadeh et al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403:503–511, 2001.CrossRefGoogle Scholar
  3. 3.
    A. Arnone and B. Davidson. The hardwiring of development: Organization and function of genomic regulatory systems. Development, 124:1851–1864, 1997.Google Scholar
  4. 4.
    T. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford University Press, New York NY, 1997.zbMATHGoogle Scholar
  5. 5.
    P.O. Brown and D. Botstein. Exploring the new world of the genome with DNA microarrays. Nature Genetics, 21:33–37, 1999.CrossRefGoogle Scholar
  6. 6.
    C. Cotta and P. Moscato. Inferring phylogenetic trees using evolutionary algorithms. In J.J. Merelo et al., editors, Parallel Problem Solving From Nature VII, volume 2439 of Lecture Notes in Computer Science, pages 720–729. Springer-Verlag, Berlin, 2002.CrossRefGoogle Scholar
  7. 7.
    J.L. DeRisi, V.R. Lyer, and P.O Brown. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278:680–686, 1997.CrossRefGoogle Scholar
  8. 8.
    M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the USA, 95:14863–14868, 1998.Google Scholar
  9. 9.
    D. Fasulo. An analysis of recent work on clustering algorithms. Technical Report UW-CSEO1-03-02, University of Washington, 1999.Google Scholar
  10. 10.
    P.M. França, A.S. Mendes, and P. Moscato. A memetic algorithm for the total tardiness single machine scheduling problem. European Journal of Operational Research, 132(1):224–242, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    V.R. Iyer et al. The transcriptional program in the response of human fibroblasts to serum. Science, 283:83–87, 1999.CrossRefGoogle Scholar
  12. 12.
    R.G. Jenner, M.M. Alba, C. Bosho., and P. Kellam. Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. Journal of Virology, 75:891–902, 2001.CrossRefGoogle Scholar
  13. 13.
    E.V. Koonin. The emerging paradigm and open problems in comparative genomics. Bioinformatics, 15:265–266, 1999.CrossRefGoogle Scholar
  14. 14.
    A.S. Mendes, P.M. França, and P. Moscato. NP-Opt: An optimization framework for NP problems. In Proceedings of POM2001-International Conference of the Production and Operations Management Society, pages 82–89, 2001.Google Scholar
  15. 15.
    P. Merz. Clustering gene expression profiles with memetic algorithms. In J.J. Merelo et al., editors, Parallel Problem Solving From Nature VII, volume 2439 of Lecture Notes in Computer Science, pages 811–820. Springer-Verlag, Berlin, 2002.CrossRefGoogle Scholar
  16. 16.
    P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics. Kluwer Academic Publishers, Boston, 2002.Google Scholar
  17. 17.
    R. Tanese. Distributed genetic algorithms. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 434–439, San Mateo, CA, 1989. Morgan Kaufmann.Google Scholar
  18. 18.
    H.-K. Tsai, J.-M. Yang, and C.-Y. Kao. Applying genetic algorithms to finding the optimal gene order in displaying the microarray data. In W.B. Langdon et al., editors, Proceedings og the 2002 Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carlos Cotta
    • 1
  • Alexandre Mendes
    • 2
  • Vinícius Garcia
    • 2
  • Paulo França
    • 2
  • Pablo Moscato
    • 3
  1. 1.Dept. Lenguajes y Ciencias de la ComputaciónUniversity of Málaga, ETSI InformáticaMálagaSpain
  2. 2.Faculdade de Engenharia Elétrica e de ComputaçãoUniversidade Estadual de CampinasCampinasBrazil
  3. 3.School of Electrical Engineering and Computer ScienceUniversity of NewcastleCallaghanAustralia

Personalised recommendations