Skip to main content

Evolutionary Computing for the Satisfiability Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2611))

Abstract

This paper presents GASAT, a hybrid evolutionary algorithm for the satisfiability problem (SAT). A specific crossover operator generates new solutions, that are improved by a tabu search procedure. The performance of GASAT is assessed using a set of well-known benchmarks. Comparisons with state-of-the-art SAT algorithms show that GASAT gives very competitive results. These experiments also allow us to introduce a new SAT benchmark from a coloring problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belaid Benhamou and Lakhdar Sais. Theoretical study of symmetries in propositional calculus and applications. In CADE’92, pages 281–294, 1992.

    Google Scholar 

  2. May Beresin, Eugene Levine, and John Winn. A chessboard coloring problem. The College Mathematics Journal, 20(2):106–114, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. Communications of the ACM, 5(7):394–397, Jul 1962.

    Article  MATH  MathSciNet  Google Scholar 

  4. Kenneth A. De Jong and William M. Spears. Using genetic algorithm to solve NP-complete problems. In Proc. of the Third Int. Conf. on Genetic Algorithms, pages 124–132, San Mateo, CA, 1989.

    Google Scholar 

  5. Olivier Dubois, Pascal André, Yacine Boufkhad, and Jacques Carlier. SAT versus UNSAT. In Second DIMACS implementation challenge: cliques, coloring and satis fiability, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 415–436, 1996.

    Google Scholar 

  6. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In Bernhard Nebel, editor, Proc. of the IJCAI’01, pages 248–253, San Francisco, CA, 2001.

    Google Scholar 

  7. Agoston E. Eiben, Jan K. van der Hauw, and Jano I. van Hemert. Graph coloring with adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25–46, 1998.

    Article  MATH  Google Scholar 

  8. Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of Operations Research, 63:437–461, 1997.

    Article  Google Scholar 

  9. Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, San Francisco, 1978.

    Google Scholar 

  10. Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, 1998.

    Google Scholar 

  11. Jens Gottlieb, Elena Marchiori, and Claudio Rossi. Evolutionary algorithms for the satisfiability problem. Evolutionary Computation, 10(1):35–50, 2002.

    Article  Google Scholar 

  12. Richard W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal, 29(2):147–160, April 1950.

    MathSciNet  Google Scholar 

  13. Jin-Kao Hao and Raphael Dorne. A new population-based method for satisfiability problems. In Proc. of the 11th European Conf. on Artificial Intelligence, pages 135–139, Amsterdam, 1994.

    Google Scholar 

  14. Edward A. Hirsch and Arist Kojevnikov. UnitWalk: A new SAT solver that uses local search guided by unit clause elimination. PDMI preprint 9/2001, Steklov Institute of Mathematics at St.Petersburg, 2001.

    Google Scholar 

  15. Wengi Huang and Renchao Jin. Solar, a quasi physical algorithm for sat. Science in China (Series E), 2(27):179–186, 1997.

    Google Scholar 

  16. Henry Kautz and Bart Selman. Workshop on theory and applications of satisfiability testing (SAT2001). In Electronic Notes in Discrete Mathematics, volume 9, June 2001.

    Google Scholar 

  17. Chu Min Li. Integrating equivalency reasoning into davis-putnam procedure. In Proc. of the AAAI’00, pages 291–296, 2000.

    Google Scholar 

  18. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In Proc. of the IJCAI’97, pages 366–371, 1997.

    Google Scholar 

  19. Chu Min Li, Bernard Jurkowiak, and Paul W. Purdom. Integrating symmetry breaking into a dll procedure. In Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT2002), pages 149–155, 2002.

    Google Scholar 

  20. Bertrand Mazure, Lakhdar Saís, and Éric Grégoire. Tabu search for SAT. In Proc. of the 14th National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence Conference (AAAI-97/IAAI-97), pages 281–285, Providence, Rhode Island, 1997.

    Google Scholar 

  21. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Cha.: Engineering an efficient SAT solver. In Proc. of the 38th Design Automation Conference (DAC’01), Jun 2001.

    Google Scholar 

  22. Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search. In Proc. of the AAAI, Vol. 1, pages 337–343, 1994.

    Google Scholar 

  23. Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving hard satisfiability problems. In Proc. of the AAAI’92, pages 440–446, San Jose, CA, 1992.

    Google Scholar 

  24. Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The sat2002 competition. Technical report, Fifth International Symposium on the Theory and Applications of Satisfiability Testing, May 2002.

    Google Scholar 

  25. William M. Spears. Simulated annealing for hard satisfiability problems. In Second DIMACS implementation challenge: cliques, coloring and satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 533–558, 1996.

    Google Scholar 

  26. Hantao Zhang. SATO: An efficient propositional prover. In Proc. of the 14th International Conference on Automated deduction, volume 1249 of LNAI, pages 272–275, Berlin, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hao, JK., Lardeux, F., Saubion, F. (2003). Evolutionary Computing for the Satisfiability Problem. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-36605-9_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00976-4

  • Online ISBN: 978-3-540-36605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics