Advertisement

Searching for Maximum Cliques with Ant Colony Optimization

  • Serge Fenet
  • Christine Solnon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)

Abstract

In this paper, we investigate the capabilities of Ant Colony Optimization (ACO) for solving the maximum clique problem. We describe Ant-Clique, an algorithm that successively generates maximal cliques through the repeated addition of vertices into partial cliques. ACO is used to choose, at each step, the vertex to add. We illustrate the behaviour of this algorithm on two representative benchmark instances and we study the impact of pheromone on the solution process. We also experimentally compare Ant-Clique with GLS, a Genetic Local Search approach, and we show that Ant-Clique finds larger cliques, on average, on a majority of DIMACS benchmark instances, even though it does not reach the best known results on some instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Battiti and M. Protasi. Reactive local search for the maximum clique problem. Algorithmica, 29(4):610–637, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, volume 4. Kluwer Academic Publishers, Boston, MA, 1999.Google Scholar
  3. 3.
    M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.Google Scholar
  4. 4.
    M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5(2):137–172, 1999.CrossRefGoogle Scholar
  5. 5.
    M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.CrossRefGoogle Scholar
  6. 6.
    E. Marchiori. Genetic, iterated and multistart local search for the maximum clique problem. In Applications of Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim, volume 2279, pages 112–121. Springer-Verlag, 2002.Google Scholar
  7. 7.
    C. Solnon. Ants can solve constraint satisfaction problems. IEEE Transactions on Evolutionary Computation, 6(4):347–357, 2002.CrossRefGoogle Scholar
  8. 8.
    C. Solnon. Boosting ACO with a preprocessing step. In Applications of Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim, volume 2279, pages 161–170. Springer-Verlag, 2002.Google Scholar
  9. 9.
    T. Stützle and H.H. Hoos. MAX-MIN Ant System. Journal of Future Generation Computer Systems, 16:889–914, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Serge Fenet
    • 1
  • Christine Solnon
    • 1
  1. 1.LIRISNautibus, University Lyon IVilleurbanne cedexFrance

Personalised recommendations