Skip to main content

Neutral Variations Cause Bloat in Linear GP

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2610))

Included in the following conference series:

Abstract

In this contribution we investigate the influence of different variation effects on the growth of code. A mutation-based variant of linear GP is applied that operates with minimum structural step sizes. Results show that neutral variations are a direct cause for (and not only a result of) the emergence and the growth of intron code. The influence of non-neutral variations has been found to be considerably smaller. Neutral variations turned out to be beneficial by solving two classification problems more successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Banzhaf, Genotype-Phenotype-Mapping and Neutral Variation: A Case Study in genetic programming. In Proceedings of the Conference on Parallel Problem Solving from Nature III, pp. 322–332, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  2. W. Banzhaf and W. B. Langdon, Some considerations on the reason for bloat. Genetic Programming and Evolvable Machines, vol. 3(1), 81–91, 2002.

    Article  MATH  Google Scholar 

  3. W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming-An Introduction. On the Automatic Evolution of Computer Programs and its Application. dpunkt/Morgan Kaufmann, Heidelberg/San Francisco, 1998.

    Google Scholar 

  4. W. Banzhaf, M. Brameier, M. Stautner, and K. Weinert. Genetic Programming and its Application in Machining Technology. In H.-P. Schwefel et al. (eds.) Advances in Computational Intelligence-Theory and Practice, Springer, Berlin, 2002.

    Google Scholar 

  5. T. Blickle and L. Thiele, Genetic Programming and Redundancy. In J. Hopf(ed.) Genetic Algorithms within the Framework of Evolutionary Computation (Workshop at KI-94), pp. 33–38, Max-Planck-Institut für Informatik, Technical Report No. MPI-I-94-241, 1994.

    Google Scholar 

  6. M. Brameier and W. Banzhaf, A Comparison of Linear Genetic Programming and Neural Networks in Medical Data Mining. IEEE Transactions on Evolutionary Computation, vol. 5(1), pp. 17–26, 2001.

    Article  Google Scholar 

  7. M. Brameier and W. Banzhaf, Explicit Control of Diversity and Effiective Variation Distance in Linear Genetic Programming. In J. A. Foster et al. (eds.) Genetic Programming, Proceedings of the 5th European Conference (EuroGP 2002), pp. 37–49, Springer-Verlag, LNCS, Berlin, 2002.

    Google Scholar 

  8. M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge University Press, 1983.

    Google Scholar 

  9. J. R. Koza, Genetic Programming. MIT Press, Cambridge, MA, 1992.

    MATH  Google Scholar 

  10. W. B. Langdon and R. Poli, Fitness Causes Bloat. In P. K. Chawdhry et al. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 13–22, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  11. W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, The Evolution of Size and Shape. In L. Spector et al. (eds.) Advances in Genetic Programming III, pp. 163–190, MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  12. P. Nordin and W. Banzhaf, Complexity Compression and Evolution. In L. J. Eshelman (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), pp. 310–317, Morgan Kaufmann, San Francisco, CA, 1995.

    Google Scholar 

  13. T. Soule and J. A. Foster, Code Size and Depth Flows in Genetic Programming. In J. R. Koza et al. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference (GP’97), pp. 313–320, Morgan Kaufmann, San Francisco, CA, 1997.

    Google Scholar 

  14. T. Soule and R. B. Heckendorn, An Analysis od the Causes of Code Growth in Genetic Programming. Genetic Programming and Evolvable Machines, vol. 3(3), pp. 283–309, 2002

    Article  MATH  Google Scholar 

  15. T. Soule and J. A. Foster, Removal Bias: A new Cause of Code Growth in Treebased Evolutionary Programming. In Proceedings of the International Conference on Evolutionary Computation (ICEC’98), pp. 781–786, IEEE Press, 1998.

    Google Scholar 

  16. T. Yu and J. Miller, Neutrality and the Evolvability of Boolean Function Landscapes. In J. F. Miller et al. (eds.) Genetic Programming, Proceedings of the 4th European Conference (EuroGP 2001), pp. 204–217, Springer-Verlag, LNCS, Berlin, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brameier, M., Banzhaf, W. (2003). Neutral Variations Cause Bloat in Linear GP. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds) Genetic Programming. EuroGP 2003. Lecture Notes in Computer Science, vol 2610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36599-0_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-36599-0_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00971-9

  • Online ISBN: 978-3-540-36599-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics