Skip to main content

Context Based Object Detection from Video

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2626))

Included in the following conference series:

Abstract

The past few years have seen a dramatic request for semantic video analysis. Object based interpretation in real-time imposes increased challenges on resource management to maintain sufficient quality of service, and requires careful design of the system architecture. This paper focuses on the role of context for system performance in a multi-stage object detection process. We extract context from simple features to determine regions of interest, provide an innovative method to identify the object’s topology from local object features, and we outline the concept for a correspondingly structured system architecture. Performance implications are analysed with reference to the application of logo detection in sport broadcasts and provide evidence for the crucial improvements achieved from context information.

This work is funded by the European Commission’s IST project DETECT under grant number IST-2001-32157.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Assfalg, M. Bertini, C. Colombo, and A. Del Bimbo. Semantic annotation of sports videos. IEEE Multimedia, 9(2):52–60, 2002.

    Article  Google Scholar 

  2. S. Becker. Implicit learning in 3D object recognition: The importance of temporal context. Neural Computation, 11(2):347–374, 1999.

    Article  Google Scholar 

  3. S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color-and texture-based image segmentation using em and its applications to content-based image retrieval. In Proc. International Conference on Computer Vision, pages 675–682. Bombay, India, 1998.

    Google Scholar 

  4. A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

    Google Scholar 

  5. F. Bremond and M. Thonnat. A context representation for surveillance systems. In Proc. Workshop on Conceptual Descriptions from Images, 1996.

    Google Scholar 

  6. J. L. Crowley, J. Coutaz, G. Rey, and P. Reignier. Perceptual components for context aware computing. In Proc. 4th International Conference on Ubiquitous Computing, 2002.

    Google Scholar 

  7. A. K. Dey. Understanding and using context. In Proc. 3rd International Conference on Ubiquitous Computing, 2001.

    Google Scholar 

  8. B. A. Draper. Learning control strategies for object recognition. In K. Ikeuchi and M. Veloso, editors, Symbolic Visual Learning, chapter 3, pages 49–76. Oxford University Press, New York, 1997.

    Google Scholar 

  9. D. Hall, C. de Verdiere, and J.L. Crowley. Object recognition using coloured receptive fields. In Proc. European Conference on Computer Vision, 2000.

    Google Scholar 

  10. S. Hongong, F. Bremond, and R. Nevatia. Bayesian framework for video surveillance application. In Proc. International Conference onPattern Recognition, 2000.

    Google Scholar 

  11. M. Irani and P. Anandan. Video indexing based on mosaic representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 86(5):905–921, 1998.

    Google Scholar 

  12. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254–1259, November 1998.

    Article  Google Scholar 

  13. B. Mel. Seemore: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation, 9:777–804, 1997.

    Article  Google Scholar 

  14. A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4):349–361, 2001.

    Article  Google Scholar 

  15. M.R. Naphade and T.S. Huang. A probabilistic framework for semantic video indexing, filtering, and retrieval. IEEE Transactions on Multimedia, 3(1):141–151, 2001.

    Article  Google Scholar 

  16. S. Obdrzalek and J. Matas. Object recognition using local affine frames on distinguished regions. In Proc. British Machine Vision Conference, 2002.

    Google Scholar 

  17. L. Paletta, G. Paar, and A. Wimmer. Mobile visual detection of traffic infrastructure. In Proc. IEEE International Conference on Intelligent Transportation Systems, pages 616–621, Oakland, CA, 2001.

    Google Scholar 

  18. L. Paletta and A. Pinz. Active object recognition by view integration and reinforcement learning. Robotics and Autonomous Systems, 31(1–2):71–86, 2000.

    Article  Google Scholar 

  19. L. Paletta, M. Prantl, and A. Pinz. Learning temporal context in active object recognition using Bayesian analysis. In Proc. International Conference on Pattern Recognition, pages 695–699, 2000.

    Google Scholar 

  20. F. Sadjadi. Automatic Target Recognition XII. Proc. of SPIE Vol. 4726, Aerosense 2002, Orlando, FL, 2002.

    Google Scholar 

  21. B. Schiele and J. L. Crowley. Transinformation for active object recognition. In Proc. International Conference on Computer Vision, pages 249–254, 1998.

    Google Scholar 

  22. B. Schiele and J.L. Crowley. Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, pages 31–50, 2000.

    Google Scholar 

  23. C. Schmid. A structured probabilistic model for recognition. In Proc. IEEE International Conference on Computer Vision, 1999.

    Google Scholar 

  24. A. Torralba and P. Sinha. Statistical context priming for object detection. In Proc. IEEE International Confernce on Computer Vision, 2001.

    Google Scholar 

  25. P. Viola and M. Jones. Rapid object detection using a bossted cascade of simple features. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paletta, L., Greindl, C. (2003). Context Based Object Detection from Video. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds) Computer Vision Systems. ICVS 2003. Lecture Notes in Computer Science, vol 2626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36592-3_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-36592-3_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00921-4

  • Online ISBN: 978-3-540-36592-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics