Skip to main content

Implementing the Expert Object Recognition Pathway

  • Conference paper
  • First Online:
Book cover Computer Vision Systems (ICVS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2626))

Included in the following conference series:

Abstract

Brain imaging studies suggest that expert object recognition is a distinct visual skill, implemented by a dedicated anatomic pathway. Like all visual pathways, the expert recognition pathway begins with the early visual system (retina, LGN/SC, striate cortex). It is defined, however, by subsequent diffuse activation in the lateral occipital cortex (LOC), and sharp foci of activation in the fusiform gyrus and right inferior frontal gyrus. This pathway recognizes familiar objects from familiar viewpoints under familiar illumination. Significantly, it identifies objects at both the categorical and instance (subcategorical) levels, and these processes cannot be disassociated. This paper presents a four-stage functional model of the expert object recognition pathway, where each stage models one area of anatomic activation. It implements this model in an end-to-end computer vision system, and tests it on real images to provide feedback for the cognitive science and computer vision communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Biederman, “Recognition-by-Components: A Theory of Human Image Understanding,” Psychological Review, vol. 94, pp. 115–147, 1987.

    Article  Google Scholar 

  2. V. Bruce and A. Young, In the Eye of the Beholder: The Science of Face Perception. New York: Oxford University Press, 1998.

    Google Scholar 

  3. H. H. Bülthoff and S. Edelman, “Psychophysical Support for a 2-D View Interpolation Theory of Object Recognition,” Proceedings of the National Academy of Science, vol. 89, pp. 60–64, 1992.

    Article  Google Scholar 

  4. H. H. Bülthoff, C. Wallraven, and A. Graf, “View-based Dynamic Object Recognition based on Human Perception,” International Conference on Pattern Recognition, Quebec City, 2002.

    Google Scholar 

  5. L. L. Chao, A. Martin, and J. V. Haxby, “Are face-responsive regions selective only for faces?,” NeuroReport, vol. 10, pp. 2945–2950, 1999.

    Article  Google Scholar 

  6. V. P. Clark, K. Keil, J. M. Maisog, S. Courtney, L. G. Ungeleider, and J. V. Haxby, “Functional Magnetic Resonance Imaging of Human Visual Cortex during Face Matching: A Comparison with Positron Emission Tomography, ” NeuroImage, vol. 4, pp. 1–15, 1996.

    Article  Google Scholar 

  7. B. J. Frey, A. Colmenarez, and T. S. Huang, “Mixtures of Local Linear Subspaces for Face Recognition, ” IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998.

    Google Scholar 

  8. I. Gauthier and N. K. Logothetis, “Is Face Recognition Not So Unique After All?,” Cognitive Neuropsychology, vol. 17, pp. 125–142, 2000.

    Article  Google Scholar 

  9. I. Gauthier, M. J. Tarr, A. W. Anderson, P. Skudlarski, and J. C. Gore, “Behavioral and Neural Changes Following Expertise Training,” Meeting of the Psychonomic Society, Philadelphia, 1997.

    Google Scholar 

  10. J. V. Haxby, L. G. Ungerleider, V. P. Clark, J. L. Schouten, E. A. Hoffman, and A. Martin, “The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Recognition,” Neuron, vol. 22, pp. 189–199, 199.

    Google Scholar 

  11. A. Ishai, L. G. Ungerleider, A. Martin, J. L. Schouten, and J. V. Haxby, “Distributed representation of objects in the human ventral visual pathway,” Science, vol. 96, pp. 9379–9384, 1999.

    Google Scholar 

  12. L. Itti, “Modeling Primate Visual Attention,” in Computational Neuroscience: A Comprehensive Approach, J. Feng, Ed. Boca Raton, FL: CRC Press, 2002.

    Google Scholar 

  13. N. Kambhatla and T. K. Leen, “Dimension Reduction by Local PCA,” Neural Computation, vol. 9, pp. 1493–1516, 1997.

    Article  Google Scholar 

  14. N. Kanwisher, M. Chun, J. McDermott, and P. Ledden, “Functional Imaging of Human Visual Recognition,” Cognitive Brain Research, vol. 5, pp. 55–67, 1996.

    Article  Google Scholar 

  15. S. M. Kosslyn, Image and Brain. Cambridge, MA: MIT Press, 1994.

    Google Scholar 

  16. S. M. Kosslyn, A. Pascual-Leone, O. Felician, S. Camposano, J. P. Keenan, W. L. Thompson, G. Ganis, K. E. Sukel, and N. M. Alpert, “The Role of Area 17 in Visual Imagery: Convergent Evidence from PET and rTMS,” Science, vol. 284, pp. 167–170, 1999.

    Article  Google Scholar 

  17. Z. Kourtzi and N. Kanwisher, “Cortical Regions Involved in Perceiving Object Shape,” The Journal of Neuroscience, vol. 20, pp. 3310–3318, 2000.

    Google Scholar 

  18. T. S. Lee, D. Mumford, R. Romero, and V. A. F. Lamme, “The role of the primary visual cortex in higher level vision,” Vision Research, vol. 38, pp. 2429–2454, 1998.

    Article  Google Scholar 

  19. D. G. Lowe, Perceptual Organization And Visual Recognition. Boston: Kluwer, 1985.

    Google Scholar 

  20. E. Maguire, C. D. Frith, and L. Cipolotti, “Distinct Neural Systems for the Encoding and Recognition of Topography and Faces,” NeuroImage, vol. 13, pp. 743–750, 2001.

    Article  Google Scholar 

  21. A. Maki, P. Nordlund, and J.-O. Eklundh, “Attentional Scene Segmentation: Integrating Depth and Motion from Phase,” Computer Vision and Image Understanding, vol. 78, pp. 351–373, 2000.

    Article  Google Scholar 

  22. D. Marr, Vision. Cambridge, MA: Freeman, 1982.

    Google Scholar 

  23. K. Nakamura, R. Kawashima, N. Sata, A. Nakamura, M. Sugiura, T. Kato, K. Hatano, K. Ito, H. Fukuda, T. Schormann, and K. Zilles, “Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study,” Brain, vol. 123, pp. 1903–1912, 2000.

    Article  Google Scholar 

  24. A. Oliva and P. G. Schyns, “Coarse Blobs or Fine Edges? Evidence That Information Diagnoticity Changes the Perception of Complex Visual Stimuli,” Cognitive Psychology, vol. 34, pp. 72–107, 1997.

    Article  Google Scholar 

  25. A. J. O’Toole, K. A. Deffenbacher, D. Valentin, and H. Abdi, “Structural Aspects of Face Recognition and the Other Race Effect,” Memory and Cognition, vol. 22, pp. 208–224, 1994.

    Google Scholar 

  26. S. E. Palmer, Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press, 1999.

    Google Scholar 

  27. D. Parkhurst, K. Law, and E. Neibur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Research, vol. 42, pp. 107–123, 2002.

    Article  Google Scholar 

  28. D. A. Pollen, J. P. Gaska, and L. D. Jacobson, “Physiological Constraints on Models of Visual Cortical Function,” in Models of Brain Functions, M. Rodney and J. Cotterill, Eds. New York: Cambridge University Press, 1989, pp. 115–135.

    Google Scholar 

  29. A. Puce, T. Allison, J. C. Gore, and G. McCarthy, “Face-sensitive regions in human extrastriate cortex studied by functional MRI,” Journal of Neurophysiology, vol. 74, pp. 1192–1199, 1995.

    Google Scholar 

  30. J. W. Tanaka and T. Curran, “A Neural Basis for Expert Object Recognition,” Psychological Science, vol. 12, pp. 43–47, 2001.

    Article  Google Scholar 

  31. M. J. Tarr and I. Gauthier, “FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise,” Neuroscience, vol. 3, pp. 764–769, 2000.

    Google Scholar 

  32. M. E. Tipping and C. M. Bishop, “Mixtures of Probabilistic Principal Component Analysers,” Neural Computation, vol. 11, pp. 443–482, 1999.

    Article  Google Scholar 

  33. F. Tong, K. Nakayama, M. Moscovitch, O. Weinrib, and N. Kanwisher, “Response Properties of the Human Fusiform Face Area,” Cognitive Neuropsychology, vol. 17, pp. 257–279, 2000.

    Article  Google Scholar 

  34. L. G. Ungeleider and M. Mishkin, “Two cortical visual systems,” in Analysis of visual behavior, D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, Eds. Cambridge, MA: MIT Press, 1982, pp. 549–586.

    Google Scholar 

  35. K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual Modulation in Primary Visual Cortex,” Neuroscience, vol. 16, pp. 7376–7389, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Draper, B.A., Baek, K., Boody, J. (2003). Implementing the Expert Object Recognition Pathway. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds) Computer Vision Systems. ICVS 2003. Lecture Notes in Computer Science, vol 2626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36592-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36592-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00921-4

  • Online ISBN: 978-3-540-36592-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics