Skip to main content

Directions in the Theory of Quantum Control

  • Chapter
  • First Online:
Multidisciplinary Research in Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 289))

Abstract

We survey a number of directions in the current research on the control of finite dimensional bilinear quantum systems. We describe the model as well as the role of Lie algebra theory in determining controllability properties. We also discuss techniques for constructive controllability of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Albertini and D. D’Alessandro, The Lie algebra structure and controllability of spin systems, Linear Algebra and its Applications, Vol 350,1–3, pp. 213–235, 2002.

    MATH  MathSciNet  Google Scholar 

  2. F. Albertini and D. D’Alessandro, Notions of controllability for quantum mechanical systems, preprint http://arXiv.org, quant-ph 0106128.

  3. C. Altafini, Controllability of quantum mechanical systems by root space decomposition of su(n), preprint, arXiv: quant-ph/0110147.

    Google Scholar 

  4. J. Baillieul, Geometric methods for nonlinear optimal control problems, Journal of Optimization Theory and Applications, Vol. 25, No. 4, August 1978, pg. 519–548.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Blum, Density Matrix Theory and Applications, Plenum Press, New York, 1981.

    Google Scholar 

  6. D. D’Alessandro, Algorithms for quantum control based on decompositions of Lie groups, in Proceedings 39-th conference on Decision and Control, Sidney, Australia, Dec. 2000, pg. 967–968.

    Google Scholar 

  7. D. D’Alessandro, Controllability of one spin and two homonuclear spins, preprint http://arXiv.org, quant-ph 0106127, to appear in Mathematics of Control, Signals and Systems.

  8. D. D’Alessandro, The optimal control problem on SO(4) and its applications to quantum control, IEEE Transactions on Automatic Control, vol. 47, No. 1, January 2002, pp. 87–92.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. D’Alessandro, Optimal evaluation of generalized Euler angles with application to classical and quantum control, preprint, arXiv: quant-ph/0110120.

    Google Scholar 

  10. D. D’Alessandro and M. Dahleh, Optimal control of two-level quantum systems, IEEE Transactions on Automatic Control, Vol. 46, No. 6, June 2001, pg. 867–877.

    MathSciNet  Google Scholar 

  11. W. A. de Graaf, Lie Algebras, Theory and Algorithms, North-Holland Mathematical Library, 56, Amsterdam, 2000.

    Google Scholar 

  12. D. P. Di Vincenzo, E. Knill, R. Laflamme and W. Zurek eds. Quantum Coherence and Decoherence, Proceedings of the ITP Conference held at the University of California, Santa Barbara, CA, 1996, Royal Society London, 1969, pp. 257–486, 1998.

    Google Scholar 

  13. R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, 1987.

    Google Scholar 

  14. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Applications of Mathematics, Springer Verlag, New York, 1975.

    MATH  Google Scholar 

  15. M. Goldman, Quantum Description of High-Resolution NMR in Liquids, Oxford University Press, 1988.

    Google Scholar 

  16. S. Grivopoulos and B. Bamieh, New iterative algorithms for approximate controllability of bilinear systems with applications to quantum control, Proceedings of the 41-st Conference on Decision and control, Las Vegas, NV, Dec 2002.

    Google Scholar 

  17. G. M. Huang, T. J. Tarn and J. W. Clark, On the controllability of quantum mechanical systems, J. Math. Phys. 24,11, November 1983, pg. 2608–2618.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. Jurdjević, Geometric Control Theory, Cambridge University Press, 1997.

    Google Scholar 

  19. V. Jurdjević and H. J. Sussmann, Control systems on Lie groups, Journal of Differential Equations, 12, 1972, 313–329.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Kempe, D. Bacon, D. A. Lidar and K. B. Whaley, Theory of decoherence-free fault-tolerant universal quantum computation, Preprint, arXiv:quantph/0004064.

    Google Scholar 

  21. N. Khaneja, R. Brockett, S. J. Glaser, Time Optimal Control of Spin Systems, Physical Review A, 63, 2001, 032308.

    Article  Google Scholar 

  22. N. Khaneja and S.J. Glaser, Cartan Decomposition of spin systems and universal quantum computing, preprint, http://arXiv.org, quant-ph 0010100.

  23. N. E. Leonard and P. S. Krishnaprasad, Motion control of drift free, left-invariant systems on Lie groups, IEEE Transactions on Automatic Control 40, No. 9, 1539–1554.

    Google Scholar 

  24. F. Lowenthal, Uniform finite generation of SU(2) and SL(2, RI ), Can. J. Math., Vol. XXIV, No. 4, 1972, pp. 713–727.

    MathSciNet  Google Scholar 

  25. G. Mahler and V. A. Weberruss, Quantum Networks, Dynamics of Open Nanostructures, Springer Verlag, Berlin Heidelberg, 1998.

    Google Scholar 

  26. S. Martinez, J. Cortes and F. Bullo, On Analysis and Design of Oscillatory Control Systems, Preprint June 2001, submitted.

    Google Scholar 

  27. D. Montgomery and L. Zippin, Topological Transformation Groups, New York, Interscience Publishers, 1964.

    Google Scholar 

  28. R. Murray, Z. Li and S. Sastry, A Mathematical Introduction to Robotic Manipulation, Boca Raton: CRC Press, 1994.

    MATH  Google Scholar 

  29. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.

    Google Scholar 

  30. V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, A. Peirce, Controllability of molecular systems, Physical Review A, 51,2, 1995, 960–966.

    Article  Google Scholar 

  31. V. Ramakrishna, K. L. Flores, H. Rabitz, R. J. Ober, Quantum control by decompositions of SU(2), Physical Review A, 62,053409, 2000.

    Article  Google Scholar 

  32. V. Ramakrishna, R. J. Ober, K. L. Flores and H. Rabitz, Control of a coupled two spin systems without hard pulses, preprint, http://arXiv, quant-ph 0012019.

  33. J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley Pub. Co., Reading, Mass. 1994.

    Google Scholar 

  34. S. Schirmer, H. Fu and A. Solomon, Complete controllability of quantum systems, Physical Rev. A 63 (2001) 063410, arXiv quant-ph/0010031.

    Article  Google Scholar 

  35. S. G. Schirmer, H. Fu and A. I. Solomon, Complete controllability of finite level quantum systems, J. Phys. A, 34 (2001) 1679, arXiv quant-ph/0102017.

    Article  MATH  MathSciNet  Google Scholar 

  36. S. G. Schirmer, A. I. Solomon and J. V. Leahy, Degrees of controllability for quantum systems and application to atomic systems, preprint, arXiv:quantph/0108114

    Google Scholar 

  37. S. G. Schirmer, I. C. H. Pullen and A.I. Solomon, Identification of dynamical Lie algebras for finite-level quantum control systems, preprint, arXiv quantph/0203104.

    Google Scholar 

  38. C. P. Slichter, Principles of Magnetic Resonance, Berlin; New York: Springer-Verlag, 1990.

    Google Scholar 

  39. H. J. Sussmann, Lie brackets, real analyticity and geometric control, in Differential Geometric Control Theory, R. W. Brockett, R. S. Millman and H. J. Sussmann eds., pp. 1–116, Birkhauser, Boston, 1983.

    Google Scholar 

  40. G. Turinici, Controllable quantities in bilinear quantum systems, Proceedings of the 39-th IEEE Conference on Decision and Control, Sydney, Australia, Dec. 2000, pp. 1364–1369.

    Google Scholar 

  41. G. Turinici and H. Rabitz, Quantum wave function controllability, Chem. Phys., (267), 1–9, (2001)

    Article  Google Scholar 

  42. W. Zhu and H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator, Journal of Chemical Physics, vol. 109, no. 2, p.385, 1998.

    Article  Google Scholar 

  43. Quantum Information and Computation, Vol. 1, No. 1, Special Issue on Quantum Entanglement, July 2001.

    Google Scholar 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Alessandro, D. (2003). Directions in the Theory of Quantum Control. In: Giarré, L., Bamieh, B. (eds) Multidisciplinary Research in Control. Lecture Notes in Control and Information Sciences, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36589-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36589-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00917-7

  • Online ISBN: 978-3-540-36589-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics