Skip to main content

Optimal Image Interpolation and Optical Flow

  • Chapter
  • First Online:
Multidisciplinary Research in Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 289))

Abstract

Image interpolation is the process of generating a set of intermediate images between two given images. The technique is important for a number of key problems including optical flow, image compression, image coding, and visual tracking. Numerous techniques have been proposed. In this paper, we will consider a method based on optimal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis, “On area preserving maps of minimal distortion,” in System Theory: Modeling, Analysis, and Control, edited by T. Djaferis and I. Schick, Kluwer, Holland, pages 275–287, 1999.

    Google Scholar 

  2. S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis, “Laplace-Beltrami operator and brain surface flattening,” IEEE Trans. on Medical Imaging 18, pp. 700–711, 1999.

    Article  Google Scholar 

  3. S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis, “Nondistorting flattening maps and the 3D visualization of colon CT images,” IEEE Trans. of Medical Imaging 19, pp. 665–671, 2000.

    Article  Google Scholar 

  4. J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” International Journal of Computer Vision 12, pp. 43–77, 1994.

    Article  Google Scholar 

  5. J.-D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,” Numerische Mathematik 84, pp. 375–393, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. D. Bimbo, P. Nesi, and J. L. C. Sanz, “Optical flow computation using extended constraints,”. IEEE Transactions on Image Processing, 5, pp.720–739, 1996.

    Article  Google Scholar 

  7. Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions,” Com. Pure Appl. Math. 64, pp. 375–417, 1991.

    Article  MathSciNet  Google Scholar 

  8. M. Cullen and R. Purser, “An extended Lagrangian theory of semigeostrophic fronogenesis,” J. Atmos. Sci. 41, pp. 1477–1497.

    Google Scholar 

  9. D. Fry, Shape Recognition Using Metrics on the Space of Shapes, Ph.D. Thesis, Harvard University, 1993.

    Google Scholar 

  10. W. Gangbo and R. McGann, “The geometry of optimal transportation,” Acta Math. 177, pp. 113–161, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Gangbo and R. McGann, “Shape recognition via Wasserstein distance,” Technical Report, School of Mathematics, Georgia Institute of Technology, 1998.

    Google Scholar 

  12. W. Gangbo, “An elementary proof of the polar factorization of vector-valued functions,” Arch. Rational Mechanics Anal. 128, pp. 381–399, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Grayson, “The heat equation shrinks embedded plane curves to round points,” J. Differential Geometry 26, pp. 285–314, 1987.

    MATH  MathSciNet  Google Scholar 

  14. S. Haker and A. Tannenbaum, “Optimal transport and image registration,” submitted for publication in IEEE Trans. Image Processing, January 2001.

    Google Scholar 

  15. R. Haralick and L. Shapiro, Computer and Robot Vision, Addison-Wesley, New York, 1992.

    Google Scholar 

  16. E. C. Hildreth, “Computations underlying the measurement of visual motion,” Artificial Intelligence 23, pp. 309–354, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. K. P. Horn, Robot Vision, MIT Press, Cambridge, Mass., 1986.

    Google Scholar 

  18. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence 23, pp. 185–203, 1981.

    Article  Google Scholar 

  19. L. V. Kantorovich, “On a problem of Monge,” Uspekhi Mat. Nauk. 3, pp. 225–226, 1948.

    Google Scholar 

  20. M. Knott and C. Smith, “On the optimal mapping of distributions,” J. Optim. Theory 43, pp. 39–49, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Kumar, A. Tannenbaum, and G. Balas, “Optical flow: a curve evolution approach,” IEEE Transactions on Image Processing 5, pp. 598–611, 1996.

    Article  Google Scholar 

  22. R. McCann, “Polar factorization of maps on Riemannian manifolds,” preprint 2000. Available on http://www.math.toronto.edu/mccann.

  23. J. Moser, “On the volume elements on a manifold,” Trans. Amer. Math. Soc. 120, pp. 286–294, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.-H. Nagel and W. Enkelmann, “An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences,” IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-8, pp. 565–593, 1986.

    Article  Google Scholar 

  25. S. Rachev and L. Rüschendorf, Mass Transportation Problems, Volumes I and II, Probabiltiy and Its Applications, Springer, New York, 1998.

    MATH  Google Scholar 

  26. A. Rantzer, “A dual to Lyapunov’s stability theorem,” Systems and Control Letters 42, pp. 161–168, 2001.

    Article  MathSciNet  Google Scholar 

  27. B. G. Schunck, “The motion constraints equation for optical flow,” Proceedings of the Seventh IEEE International Conference on Pattern Recognition, pp. 20–22, 1984.

    Google Scholar 

  28. A. Toga, Brain Warping, Academic Press, San Diego, 1999.

    Google Scholar 

  29. P. Viola and S. Wells, “Alignment by maximization of mutual information,” Int. J. Computer Vision 24, pp. 137–154, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to the memory of our dear friend and colleague, Professor Mohammed Dahleh.

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haker, S., Tannenbaum, A. (2003). Optimal Image Interpolation and Optical Flow. In: Giarré, L., Bamieh, B. (eds) Multidisciplinary Research in Control. Lecture Notes in Control and Information Sciences, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36589-3_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-36589-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00917-7

  • Online ISBN: 978-3-540-36589-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics