Skip to main content

Parallel Implementation for Probabilistic Analysis of 3D Discrete Cracking in Concrete

  • Conference paper
  • First Online:
  • 686 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2565))

Abstract

This work presents computational strategies used in an im- plementation of the probabilistic discrete cracking model for concrete of Rossi suitable to parallel vector processor (PVP). The computational strategies used for each realization, within the framework of Monte Carlo simulation, are the inexact Newton method to solve the highly nonlinear problem and element-by-element (EBE) iterative strategies considering that nonlinear behavior is restricted to interface elements. The simulation of a direct tension test is used to illustrate the influence of adaptive inexact Newton strategy in code performance on a CRAY T90.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossi P., Richer S.: Numerical modeling of concrete cracking based on a stochastic approach. Materials and Structures, 20 (119), (1987) 334–337.

    Article  Google Scholar 

  2. Rossi P., Wu X., Maou F. le, and Belloc A.: Scale effect on concrete in tension. Materials and Structures, 27 (172), (1994) 437–444.

    Article  Google Scholar 

  3. Rossi P., Ulm F.-J., and Hachi F.: Compressive behavior of concrete: physical mechanisms and modeling. Journal of Engineering Mechanics ASCE, 122 (11), (1996), 1038–1043.

    Article  Google Scholar 

  4. Rossi P. and Ulm F.-J.: Size effects in the biaxial behavior of concrete: physical mechanisms and modeling. Materials and Structures, 30 (198), (1997) 210–216.

    Article  Google Scholar 

  5. Paz C. N. M., Development and Implementation Probabilistic Model for 2D and 3D Discrete Cracking Concrete in Parallel Computing, D.Sc. Thesis, COPPE/UFRJ, the Graduate Institute of Federal University of Rio de Janeiro, Brazil (2000) [in Portuguese].

    Google Scholar 

  6. Press W. Teukolski H., S., Vetterling W.T. and Flannery B.: Numerical Recipes, Cambridge University Press (1992).

    Google Scholar 

  7. Fairbairn E. M. R., Paz C. N. M., Ebecken N. F. F., and Ulm F-J., Use of neural network for fitting of probabilistic scaling model parameter, Int. J. Fracture, 95, (1999), 315–324.

    Article  Google Scholar 

  8. Fairbairn E. M. R., Ebecken N. F. F., Paz C. N. M., and Ulm F-J.: Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks, Computers and Structures, 78, (2000) 497–503.

    Article  Google Scholar 

  9. Kelley C. T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in applied mathematics, SIAM. Society for Industrial and Applied Mathematics, Philadelphia, (1995).

    Google Scholar 

  10. Hughes T. J. R., Ferenez R. M., Hallquist J. O.: Large-Scale Vectorized Implicit Calculation in Solid Mechanics on a CRAY X-MP/48 Utilizing EBE Preconditionated Conjugate Gradients Computer Methods in applied Mechanics and Engineering, 61, (1987) 2115–2248.

    Google Scholar 

  11. Papadrakakis M.: Solving Large-Scale Problems in Mechanics: The Development and Application of Computational Solution, Editor, M. Papadrakakis, John Wiley and Sons, (1993).

    Google Scholar 

  12. Li Q. and Ansari F.: High Concrete in Uniaxial Tension, ACI Material J. 97-(1), (2000) 49–57.

    Google Scholar 

  13. Coutinho A. L. G. A., Martins M. A. D., Alves J. L. D., Landau L., and Moraes A.: Edge-based finite element techniques for nonlinear solid mechanics problems, Int. J. for Numerical Methods in Engineering, 50 (9), (2001) 2050–2068.

    Article  Google Scholar 

  14. Fairbairn E. M. R., Debeux V.J.C., Paz C. N. M., and Ebecken N. F. F.: Application of probabilistic Approach to the Analysis of gravity Dam Centrifuge Test, 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability (2000) PMC 2000–2261.

    Google Scholar 

  15. Kelley C. T.: Iterative methods for optimization. Frontiers in applied mathematics, SIAM Society for Industrial and Applied Mathematics, Philadelphia, (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paz, C.N.M., Martha, L.F., Alves, J.L.D., Fairbairn, E.M.R., Ebecken, N.F.F., Coutinho, A.L.G.A. (2003). Parallel Implementation for Probabilistic Analysis of 3D Discrete Cracking in Concrete. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds) High Performance Computing for Computational Science — VECPAR 2002. VECPAR 2002. Lecture Notes in Computer Science, vol 2565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36569-9_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36569-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00852-1

  • Online ISBN: 978-3-540-36569-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics