Skip to main content

A Comparison of Different Circuit Representations for Evolutionary Analog Circuit Design

  • Conference paper
  • First Online:
Evolvable Systems: From Biology to Hardware (ICES 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2606))

Included in the following conference series:

Abstract

Evolvable hardware represents an emerging field in which evolutionary design has recently produced promising results. However, the choice of effective circuit representation is inexplicit. In this paper, we compare different circuit representations for evolutionary analog circuit design. The results indicate that the design quality is better for the element-list circuit representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Higuchi, T., Iwata, M. etc.: Real World Applications of Analog and Digital Evolvable Hardware. IEEE Transactions on Evolutionary Computation 3 (1999) 220–235

    Article  Google Scholar 

  2. Tyrell, A. M., Bradley, D.W.: The Architecture for a Hardware Immune System. In: Proceedings of the Third NASA/DoD Workshop on Evolvable Hardware EH 2001. Computer Press (2001) 193-200

    Google Scholar 

  3. Rutenbar, R., Liu, H., Singhee, A., Carley, L. R.: Remembrance of Circuit Past: Macromodeling by Data Mining in Large Analog Design Spaces. In: Proceedings of the ACM/IEEE Design Automation Conference (2002)

    Google Scholar 

  4. Lohn, J. D., Colombano, S. P.: A Circuit Representation Technique for Automated Circuit Design. IEEE Transactions on Evolutionary Computation 3 (1999) 205–219

    Article  Google Scholar 

  5. Yao, X.,. Liu, Y.: Getting Most Out of Evolutionary Algorithms. In: Proceedings of the 2002 NASA DoD Conference on Evolvable Hardware EH 2002. Computer Press (2002) 8–14

    Google Scholar 

  6. Lohn, J., Laith, G., Colombano, S., Stassinopoulos, D.: A Comparison of Dynamic Fitness Schedules for Evolutionary Design of Amplifiers. In: Proceedings of the First NASA DoD Workshop on Evolvable Hardware EH’99. IEEE Computer Press (1999) 87–92

    Google Scholar 

  7. Zebulum, R.S., Pacheco, R.S., Vellasco, M.A.: Analog Circuit Evolution in Extrinsic and Intrinsic Modes. In: Sipper, M., Mange, D., and Perez-Uribe, A. (eds.): Proceedings of the Second International Conference on Evolvable Systems: From Biology to Hardware (ICES98). Lecture Notes in Computer Science, Vol. 1478. Springer-Verlag, Berlin Heidelberg New York (1998) 154–165

    Google Scholar 

  8. Koza, J.R., Bennett, F. H., Andre, D., Keane, M. A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)

    MATH  Google Scholar 

  9. Thomson, A., Layzell, P., Zebulum, R.: Explorations in Design Space: Unconventional Electronics Design Through Artificial Evolution. IEEE Transactions on Evolutionary Computation 3 (1999) 167–196

    Article  Google Scholar 

  10. Hartmann, M., Haddow, P., and Eskelund, F.: Evolving Robust Digital Designs. In: Proceedings of the 2002 NASA DoD Conference on Evolvable Hardware EH 2002. Computer Press (2002) 36–45

    Google Scholar 

  11. Ando, S., Iba, H.: Analog Circuit Design with a Variable Length Chromosome. In: Proceedings IEEE Int. Congress on Evolutionary Computation. IEEE Press (2000) 994–1001

    Google Scholar 

  12. Goh, C., Li, Y.: GA Automated Design and Synthesis of Analog Circuits with Practical Constraints. In: Proceedings IEEE Congress on Evolutionary Computation. IEEE Press (2001) 170–177

    Google Scholar 

  13. Goh, C., Chan, L., and Li, Y.: Performance Metrics Assessment for Pareto Fronts with Application to Analog Circuit Evolution. In: Giannakoglou, K.G., Tsahalos, D.T., Periaux, J., Papailiou, K.D., Fogarty, T. (eds.): Evolutionary Methods for Design, Optimization and Control. Theory and Engineering Applications of Computational Methods. CIMNE, Barcelona (2002) 208–213

    Google Scholar 

  14. Grimbleby, J.B.: Hybrid Genetic Algorithms for Analogue Network Synthesis. In: Proceedings IEEE Congress on Evolutionary Computation. IEEE Press (1999) 1781–1787

    Google Scholar 

  15. Tamplin, M.R., Hamilton, A.: Ant Circuit World: An Ant Algorithm MATHLAB Toolbox for the Design, Visualization and Analysis of Analogue Circuits. In: Proceedings of the International Conference on Evolvable Systems: From Biology to Hardware. Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg New York (2001)

    Google Scholar 

  16. Mühlenbein, H., Paaß, G.: From Recombination of Genes to the Estimation of Distributions. Parallel Problem Solving from Nature PPSN IV. Lecture Notes in Computer Science, Vol. 1141. Springer-Verlag, Berlin Heidelberg New York (1996) 178–187

    Chapter  Google Scholar 

  17. Mühlenbein, H.: The Equation for Response to Selection and its Use for Prediction. Evolutionary Computation 5 (1998) 303–346

    Article  Google Scholar 

  18. Mühlenbein, H., Mahnig, T.: Optimal Mutation Rate Using Bayesian Priors for Estimation of Distribution Algorithms, to appear.

    Google Scholar 

  19. Mühlenbein, H., Kureichik, V.M., Mahnig, T., Zinchenko, L.A.: Evolutionary Algorithms with Hierarchy and Dynamic Coding in Computer Aided Design. In: Giannakoglou, K.G., Tsahalos, D.T., Periaux, J., Papailiou, K.D., Fogarty, T. (eds.): Evolutionary Methods for Design, Optimization and Control. Theory and Engineering Applications of Computational Methods. CIMNE, Barcelona (2002) 202–207

    Google Scholar 

  20. Mühlenbein, H., Kureichik, V.M., Mahnig, T., Zinchenko, L.A.: Application of the Univariate Marginal Distribution Algorithm to Analog Circuit Design. In: Proceedings of the 2002 NASA DoD Conference on Evolvable Hardware EH 2002. Computer Press (2002) 93–101

    Google Scholar 

  21. Mühlenbein, H., Kureichik, V.M., Mahnig, T., Zinchenko, L.A.: Effective Mutation Rate of Probabilistic Models for Evolutionary Analog Circuit Design. In: Proceedings of the IEEE ICAIS 2002. Computer Press (2002) 401–406

    Google Scholar 

  22. Biggs, N.: Algebraic Graph Theory. Cambridge (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zinchenko, L., Mühlenbein, H., Kureichik, V., Mahnig, T. (2003). A Comparison of Different Circuit Representations for Evolutionary Analog Circuit Design. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds) Evolvable Systems: From Biology to Hardware. ICES 2003. Lecture Notes in Computer Science, vol 2606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36553-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-36553-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00730-2

  • Online ISBN: 978-3-540-36553-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics