Skip to main content

Models of Neutrino Masses and Mixing

  • Conference paper
  • First Online:
Particle Physics in the New Millennium

Part of the book series: Lecture Notes in Physics ((LNP,volume 616))

  • 478 Accesses

Abstract

We briefly reviewmo dels of neutrino masses and mixings. In viewof the existing experimental ambiguities many possibilities are still open. After an overview of the main alternative options we focus on the most constrained class of models based on three widely split light neutrinos within SUSY Grand Unification

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Altarelli and F. Feruglio, Phys. Lett. B 439, 112 (1998).

    Article  ADS  Google Scholar 

  2. G. Altarelli and F. Feruglio, JHEP 11, 21 (1998).

    Article  ADS  Google Scholar 

  3. G. Altarelli and F. Feruglio, Phys. Lett. B 451, 388 (1999).

    Article  ADS  Google Scholar 

  4. G. Altarelli and F. Feruglio, Phys. Rep. 320, 295 (1999).

    Article  ADS  Google Scholar 

  5. G. Altarelli, F. Feruglio and I. Masina, Phys. Lett. B 472, 382 (2000).

    Article  ADS  Google Scholar 

  6. G. Altarelli, F. Feruglio and I. Masina, JHEP 11, 040 (2000).

    Article  ADS  Google Scholar 

  7. G. Altarelli and F. Feruglio, hep-ph/0102301.

    Google Scholar 

  8. M. Gell-Mann, P. Ramond and R. Slansky in Supergravity, ed. P. van Nieuwenhuizen and D. Z. Freedman, North-Holland, Amsterdam, 1979, p.315; T. Yanagida, in Proceedings of the Workshop on the unified theory and the baryon number in the universe, ed. O. Sawada and A. Sugamoto, KEK report No. 79-18, Tsukuba, Japan, 1979. See also R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    Google Scholar 

  9. See, for example, M. C. Gonzalez-Garcia and C. Pena-Garay, hep-ph/0011245; G. L. Fogli, E. Lisi and A. Marrone, Phys. Rev. D63, 053008 (2001); S. M. Bilenkii, C. Giunti, W. Grimus and T. Schwetz, Phys. Rev. D 60, 0073007 (1999).

    Google Scholar 

  10. P. Horava and E. Witten, Nuc. Phys. B 475, 94 (1996); N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. For an immersion into this subject, see, for example, the recent paper by A. Lukas, P. Ramond, A. Romanino and G. Ross, hep-ph/0011295 and references therein.

    Google Scholar 

  12. C.D. Hoyle et al, Phys. Rev. Lett. 86(2001)1418 (hep-ph/0011014).

    Article  ADS  Google Scholar 

  13. See, for example, I. Antoniadis and K. Benakli, hep-ph/0007226.

    Google Scholar 

  14. S. M. Barr and I. Dorsner, hep-ph/0003058.

    Google Scholar 

  15. F. Vissani, hep-ph/9708483; H. Georgi and S.L. Glashow, hep-ph/9808293.

    Google Scholar 

  16. J. Ellis and S. Lola, hep-ph/9904279; J.A. Casas et al, hep-ph/9904395, hepph/9905381, hep-ph/9906281; R. Barbieri, G.G. Ross and A. Strumia, hepph/9906470; E. Ma, hep-ph/9907400; K.R.S. Balaji et al, hep-ph/0001310 and hep-ph/0002177.

    Google Scholar 

  17. Examples of degenerate models are described in A. Ioannisian, J. W. F. Valle, Phys. Lett. B 332, 93 (1994); M. Fukugita, M. Tanimoto, T. Yanagida, Phys. Rev. D 57, 4429 (1998) M. Tanimoto, hep-ph/9807283 and hep-ph/9807517; H. Fritzsch, Z. Xing, hep-ph/9808272; R. N. Mohapatra, S. Nussinov, hep-ph/9808301 and hep-ph/9809415; M. Fukugita, M. Tanimoto, T. Yanagida, hep-ph/9809554; Yue-Liang Wu, hep-ph/9810491; J. I. Silva-Marcos, hep-ph/9811381; C. Wetterich, hep-ph/9812426; S.K. Kang and C.S. Kim, hep-ph/9811379.

    Article  ADS  Google Scholar 

  18. R. Barbieri, L. J. Hall, D. Smith, A. Strumia and N. Weiner, hep/ph 9807235.

    Google Scholar 

  19. S. F. King, Phys. Lett. B 439, 350 (1998) and hep-ph/9904210; S. Davidson and S. F. King, Phys. Lett. B 445, 191 (1998); Q. Shafi and Z. Tavartkiladze, Phys. Lett B 451, 129 (1999).

    Article  ADS  Google Scholar 

  20. H. Georgi and C. Jarlskog, Phys. Lett. B 86, 297 (1979).

    Article  ADS  Google Scholar 

  21. J. Ellis and M. K. Gaillard, Phys. Lett. B 88, 315 (1979).

    Article  ADS  Google Scholar 

  22. C. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979).

    Article  ADS  Google Scholar 

  23. W. Buchmuller and T. Yanagida, hep-ph/9810308.

    Google Scholar 

  24. P. Binetruy, S. Lavignac, S. Petcov and P. Ramond, Nucl. Phys. B 496, 3 (1997); N. Irges, S. Lavignac, P. Ramond, Phys. Rev. D 58, 5003 (1998); Y. Grossman, Y. Nir, Y. Shadmi, hep-ph/9808355.

    Article  ADS  Google Scholar 

  25. Y. Hayato et al, (SuperKamiokande Collab.), Phys. Rev. Lett. 83, 1529 (1999).

    Article  ADS  Google Scholar 

  26. A. Masiero et al, Phys. Lett. B 115, 380 (1982); B Grinstein, Nucl. Phys. B 206, 387 (1982); Z. Berezhiani and Z. Tavartkiladze, Phys. Lett. B 409, 220 (1997).

    Article  ADS  Google Scholar 

  27. P. Fayet, Phys. Lett. B 146, 41 (1984).

    Article  ADS  Google Scholar 

  28. Y. Kawamura, hep-ph/0012125.

    Google Scholar 

  29. L. Hall and Y. Nomura, hep-ph/0103125.

    Google Scholar 

  30. C. H. Albright and S. M. Barr, Phys. Rev. D 58, 013002 (1998); hep-ph/9901318; hep-ph/0002155; hep-ph/0003251; C. H. Albright, K. S. Babu and S. M. Barr, Phys. Rev. Lett. 81, 1167 (1998).

    Article  ADS  Google Scholar 

  31. See, for example, S. Lola and G. G. Ross, hep-ph/9902283; K. Babu, J. Pati and F. Wilczek, hep-ph/9912538.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altarelli, G. (2003). Models of Neutrino Masses and Mixing. In: Trampetić, J., Wess, J. (eds) Particle Physics in the New Millennium. Lecture Notes in Physics, vol 616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36539-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36539-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00711-1

  • Online ISBN: 978-3-540-36539-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics