Studying Atmospheric Aerosol by Lidar

  • Gian Paolo Gobbi
Part of the Lecture Notes in Physics book series (LNP, volume 607)


During the past three decades laser radars (lidars) become an important tool for the range-resolved remote-sensing of atmospheric constituents. Amongst these are aerosols, that represent a strong, poorly-known modulator of the Earth’s climate. In this chapter the reader will first find an introduction to the lidar technique in terms of instrumental components. The lidar equation, describing the factors controlling the atmosphere- backscattered signal will then be addressed. Solution of the lidar equation to retrieve optical properties of atmospheric aerosol will be considered. Finally, a method to retrieve aerosol extinction, surface area and volume from single-wavelength lidar observations will be discussed. These arguments should suffice to deal with both the managing of simple lidar systems and with the comprehension of the large amount of information that forthcoming, space-based lidars will provide in the near future.


Atmospheric Aerosol Dust Aerosol Lidar System Lidar Measurement Lidar Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss,, W. Lahmann and W. Michaelis, Combined Raman elastic-backscatter lidar for vertical pro-filing of moisture, aerosol extinction, backscatter and lidar ratio, Appl., Phys., B, 55, 18–28, 1992.CrossRefGoogle Scholar
  2. 2.
    Barnaba, F, and G. P. Gobbi, Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert dust cases, J. Geophys. Res., 106, 3005–3018, 2001.CrossRefGoogle Scholar
  3. 3.
    Charlson, R. J. (Ed.) Aerosol forcing of climate, J. Wiley, 416pp, New York, 1995.Google Scholar
  4. 4.
    d'Almeida, G., P Koepke, and E. P. Shettle, Atmospheric aerosols, 561 pp., A Deepack, Hampton, VA, 1991.Google Scholar
  5. 5.
    Gobbi, G.P., Lidar estimation of stratospheric aerosol properties: Surface, volume, and extinction to backscatter ratio, J. Geophys. Res., 100, 11,219–11,235, 1995.CrossRefGoogle Scholar
  6. 6.
    Gobbi, G.P., G. Di Donfrancesco and A. Adriani, Stratospheric clouds physical properties during the Antarctic winter of 1995, J. Geophys. Res., 103, 10,859–10,874, 1998.CrossRefGoogle Scholar
  7. 7.
    Hinkley, E. D. (Ed.), Laser monitoring of the atmosphere, Springer Verlag, 380pp, New York, 1976.Google Scholar
  8. 8.
    Kerker, M., The scattering of light and other electromagnetic radiation, Acad. Press, New York, 1969Google Scholar
  9. 9.
    Klett, J. D., Lidar inversion with variable backscatter/extinction ratios, Applied Optics, 24, 1638–1643, 1985.Google Scholar
  10. 10.
    Kovalev, V. A., Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter to extinction ratio, Applied Optics, 30, 6053–6065, 1993.Google Scholar
  11. 11.
    Liao, H., and J.H. Seinfeld, Radiative forcing by mineral dust aerosols: Sensitivity to key variables, J. Geophys. Res., 103, 31637–31645, 1998.CrossRefGoogle Scholar
  12. 12.
    McClatchey, R.A., R. W. Fenn, J.E.A. Selby, F. E. Volz, and J. S. Garing, Optical properties of the atmosphere, Air Force Cambridge Research Labs. Paper No. 354, 85 pp., 1971.Google Scholar
  13. 13.
    Measures, R. M., Laser Remote Sensing, J. Wiley, New York, 510 pp., 1984.Google Scholar
  14. 14.
    Mischenko, M. I., J. W. Hovenier, and L. D. Travis, Eds., Light scattering by non-spherical particles, Academic Press, San Diego, 690 pp., 2000.Google Scholar
  15. 15.
    Mischenko, M. I., and L. D. Travis, Light scattering by polidispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation, Appl. Opt., 33, 7206–7225, 1994.CrossRefGoogle Scholar
  16. 16.
    Mishchenko, M. I. et al., Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, J. Geophys. Res., 102, 16,831–16,847, 1997.Google Scholar
  17. 17.
    Piironen, P. and E. W. Eloranta, Demonstration of a high-spectral-resolution lidar based on a Iodine absorption filter, Opt. Lett., 19, 234–236, 1994.Google Scholar
  18. 18.
    Reagan, J. A., M. P. McCormick, and J. D. Spinhirne, Lidar sensing of aerosols and clouds in the troposphere and stratosphere, Proc. IEEE, 77, 433–447, 1989.Google Scholar
  19. 19.
    Young, A. T., Revised depolarization corrections for atmospheric extinction, Appl. Opt., 19, 3247–3248, 1980.Google Scholar
  20. 21.
    Penner, J.E., M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga and G. Pitari, Aerosols, their direct and indirect effects, in Climate Change 2001, the Scientific Basis, 289–349, Cambridge University Press, Cambridge, UK, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gian Paolo Gobbi
    • 1
  1. 1.Istituto di Scienze dell’ Atmosfera e del Clima CNRRomeItaly

Personalised recommendations