Analytical Inverse Methods for Aerosol Retrieval

  • Kusiel S. Shifrin
Part of the Lecture Notes in Physics book series (LNP, volume 607)


The lively interest in studies of atmospheric aerosol has quickened in the past years, resulting in the development of many methods and devices. Our intent is not to describe all of them shortly, but providing a clear and concise account of existing methods, highlight their advantages and drawbacks, outline the prospects for their development, and indicate literature where the reader can find details.

Since it is impossible to exhaust the range of subjects that belong to this theme and should be included here, the condensed form presents what is considered most important, with the aim of striking a sensible compromise among the interests of different readers.


Gamma Distribution Multiple Scattering Beta Distribution Atmospheric Aerosol Spectral Transmittance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Elsevier, Amsterdam (1977).Google Scholar
  2. 2.
    A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems. John Wiley & Sons, Inc., New York (1977).Google Scholar
  3. 3.
    E. Titchmarch, An Introduction to the Theory of Fourier Integral. University Press, Oxford, U.K. (1937).Google Scholar
  4. 4.
    R.A. Fisher, Statistical Methods for Research Workers.13 th ed. Hafner, New York (1958).Google Scholar
  5. 5.
    H. Cramer, Mathematical Methods of Statistics. Princeton University Press, Princeton, N.J. (1951).Google Scholar
  6. 6.
    A. Hald, Statistical Theory with Engineering Application. John Wiley & Sons, Inc., New York (1952).Google Scholar
  7. 7.
    K.S. Shifrin, Physical Optics of Ocean Water. American Institute of Physics, New York, 1988; Introduction to Ocean Optics. Gidrometeoizdat, Leningrad (1983).Google Scholar
  8. 8.
    K.S. Shifrin and G. Tonna, Inverse problems related to light scattering in the atmosphere and ocean. In: Vol. 34 of Advances in Geophysics. Academic Press, New York, pp. 175–252 (1993).Google Scholar
  9. 9.
    E.E. Slutski, The Tables of the Incomplete Gamma-Function. Ed. Publishing House, AN USSR (1949).Google Scholar
  10. 10.
    L.M. Levin. Izvestia AN USSR Ser. Geophys, N10, 698 (1958).Google Scholar
  11. 11.
    C. Junge, Air Chemistry and Radioactivity. Academic, New York and London (1963).Google Scholar
  12. 12.
    K. Pearson, Tables of the Incomplete Beta Function. University College, London (1948).Google Scholar
  13. 13.
    K.S. Shifrin, Atmospheric Aerosol, Method of Analysis. A chapter In: The Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons, New York, pp. 446–505 (1998).Google Scholar
  14. 14.
    K.S. Shifrin, Scattering of Light in a Turbid Medium. Gostechteoretizdat, Moscow-Leningrad, 1951; NASA Technical Translation, TT F-477, Washington D.C. (1968).Google Scholar
  15. 15.
    H. Van de Hulst, Light Scattering by Small Particles. John Wiley & Sons, Inc., New York (1957).Google Scholar
  16. 16.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation. Academic, New York (1969).Google Scholar
  17. 17.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., New York (1983).Google Scholar
  18. 18.
    W. Trabert, Die Extinction des Lichtes in Linem Trüben Medium, Meteorologische Zeitschrift (1901).Google Scholar
  19. 19.
    W. Middleton, Vision Through the Atmosphere. University of Toronto, Toronto, Canada (1952).Google Scholar
  20. 20.
    S. Duntley, Appl. Optics, 3, N5 (1964).Google Scholar
  21. 21.
    G. Gouesbet and G. Gréham, eds., Optical Particle Sizing. Theory and Practice. Plenum, New York and London, p. 642 (1988).Google Scholar
  22. 22.
    E.D. Hirleman, ed., Proceedings of the 2 nd International Congress on Optical Particle Sizing. Arizona State University, p. 618, Mar. 5–8 (1990).Google Scholar
  23. 23.
    M. Maeda, S. Nakal, and M. Ikegani, eds.,Optical Particle Sizing. ’93-Yokogama, Keio University Press, p. 504, Aug. 23–26 (1993).Google Scholar
  24. 24.
    F. Durst and J. Dommick, eds., 4 th International Congress Optical Particle Sizing. Nürnberg messe GmbH, Messenzentrum D-90471, Nürnberg, p. 612 (1995).Google Scholar
  25. 26.
    K.S. Shifrin, Calculation of a Certain Class of Definite Integrals Containing the Square of the Bessel Function of the First Order; In: Proceedings of the All-Union Extra Mural Forest Institute, Leningrad, p. N2, (1956).Google Scholar
  26. 27.
    J. Chin, C. Sliepcevich, and M. Tribus, J. Phys. Chem. 59, N9 (1955).Google Scholar
  27. 28.
    V. Burenkov, O. Kopelevich, and K. Shifrin, Atmos. Oceanic Phys. 11, 519 (1975).Google Scholar
  28. 29.
    L. Bayvel, J. Knight, and G. Robertson, pp. 311–319.Google Scholar
  29. 30.
    G. de Boer and co-workers, Particle Characteristics, 4, 14 (1987).CrossRefGoogle Scholar
  30. 31.
    L. Dodge, Appl. Opt. 23, 2415 (1984).Google Scholar
  31. 32.
    L. Bayvel, J. Knight and G. Robertson, Particle Characteristics, 4, 49 (1987).CrossRefGoogle Scholar
  32. 33.
    K. Shifrin, Y. Shifrin, and I. Mukulinsky, Lett. J. Tech. Phys. 2, 68 (1984).Google Scholar
  33. 34.
    A. Jones in G. Gouesbet and G. Greham, eds., Optical Particle Sizing. Theory and Practice. Plenum, New York and London, p. 642 (1988).Google Scholar
  34. 35.
    A. Fymat and K. Mease, Reconstructing the Size Distribution of Spherical Particles for Angular Forward Scattering Data; In: A. Fymat and V. Zuev. Eds. Remote Sensing of the Atmosphere: Inversion Methods and its Application, Elsevier, Amsterdam, p. 195 (1978).Google Scholar
  35. 36.
    A. Fymat, Appl. Opt. 17, 7677 (1978).Google Scholar
  36. 37.
    R. Penndorf, J. Opt. Soc. Am. 52, 797 (1962).Google Scholar
  37. 38.
    K.S. Shifrin and V.A. Punina, Atmos. Oceanic Phys. 4, 450 (1968).Google Scholar
  38. 39.
    A. Fymat and K. Mease, Appl. Opt. 20, 194 (1981).Google Scholar
  39. 40.
    K. Shifrin and V. Raskin, Opt. Spectrosc. 71, 141 (1961).Google Scholar
  40. 41.
    K. Shifrin and A. Perelman, Opt. Spectrosc. 15, 285, 362, 434 (1963).Google Scholar
  41. 42.
    K. Shifrin and A. Perelman, In: R. Rowel and R. Stein, eds., Electromagnetic Scattering II, Gordon and Breach, new York, 1967, p. 131; Opt. & Spect. 151, 963 (1981).Google Scholar
  42. 43.
    A. Petelman and K. Shifrin, Improvements to the spectral transparency method for determining particle-size distribution. Appl. Opt. 19, 1787 (1980).CrossRefGoogle Scholar
  43. 44.
    V. Bachtiyarov and co-workers, Pure Appl. Geophys. 64, 204 (1966).CrossRefGoogle Scholar
  44. 45.
    N. Ninitinskaya, A. Perelman, and K. Shifrin, CR USSR Acad. Sci. 190, 331 (1970).Google Scholar
  45. 46.
    Kl Shifrin, A. Perelman, and V. Volgin, Opt. Spectrosc. 51, 535 (1981).Google Scholar
  46. 47.
    C. Lanczos, Applied Analysis. Prentice-Hall, New York (1964).Google Scholar
  47. 48.
    K. Shifrin and A. Perelman, CR USSR Acad. Sci. 158, 208 (1964).Google Scholar
  48. 49.
    K. Shifrin and E. Chayanova, Atmos. Oceanic Phys. 2, 87(1966).Google Scholar
  49. 50.
    K. Shifrin and A. Perelman, Tellus 18, 566 (1966).CrossRefGoogle Scholar
  50. 51.
    K. Shifrin, V. Volgin and Y. Villevalde, Opt. Spectrosc. 56, 202 (1984).Google Scholar
  51. 52.
    K.S. Shifrin and I.N. Salganik, Scattering of Light by Seawater Models; In: Tables of Light Scattering. Vol. 5, Gidrometeoizdat, Leningrad (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kusiel S. Shifrin
    • 1
  1. 1.College of Oceanic & Atmospheric SciencesOregon State UniversityCorvallis

Personalised recommendations