Advertisement

The Earth Radiation

  • Giuseppe Dalu
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 607)

Abstract

Synoptic information on a global scale, necessary for general circulation models and climate researches, can be obtained only with passive remote sensing from space. The most relevant part of the information on atmosphere and oceans is retrieved from the radiometric measurements of the radiation emitted by the atmosphere and the surface, i.e., the Earth radiation. This chapter gives an overview of the information that can be obtained from passive infrared and microwave data, and presents some of the algorithms used to retrieve the necessary physical parameters. The parameters examined are: sea surface temperature, surface winds, surface emittance, atmospheric water vapor content, liquid water content, vertical temperature profile, and water vapor profile. The derivation of the radiative transfer equation presented is very simple, according with the objectives of the course, even if it is applicable only for the remote sensing of radiation emerging from the atmosphere.

Keywords

Brightness Temperature Water Vapor Content Liquid Water Content Radiative Transfer Equation Radiative Transfer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chahine, M. (1970). Inverse problems in radiative transfer: Determination of atmospheric parameters. J. Atmos. Sci., 27, 960.CrossRefGoogle Scholar
  2. 2.
    Chang, A. T. C., and Milman, A. S. (1982). Retrieval of ocean surface and atmospheric parameters from multichannel microwave radiometric measurements. IEEE Trans. Geosci. Electron., GE-20, 217.Google Scholar
  3. 3.
    Chang, A.T.C., and Wilheit T.T. (1979). Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from Nimbus 5 satellite. Radio Science, vol. 14, 793–802.CrossRefGoogle Scholar
  4. 4.
    Chesters, D., Uccellini, L.W., and Robinson, W. D. (1983). Low-level water vapor field from the VISSR atmospheric sounder (VAS) split window channels. J. Climate appl. Met., 22, 725.CrossRefGoogle Scholar
  5. 5.
    Conrath, B. J. (1969). On the estimation of relative humidity profiles from medium-resolution infrared spectra obtained from a satellite. J. geophys. Res., 74, 3347.CrossRefGoogle Scholar
  6. 6.
    Dalu, G., Prabhakara, C., and Lo, R.C. (1981). Improved accuracy of the remote sensing of sea surface temperature. Proc. COSPAR/SCOR/IUCRM Symp.: Oceanography from Space, Edited by J.F.R. Gower, Plenum Press, 109–114.Google Scholar
  7. 7.
    Dalu, G. (1985). Emittance effect on the remotely sensed sea surface temperature. Int. J. of Remote Sensing, 6, 733.CrossRefGoogle Scholar
  8. 8.
    Dalu, G., Viola, A., and Marullo, S. (1985). Sea surface temperature from AVHRR-2 data. Nuovo Cim., 8 C, 6, 793.CrossRefGoogle Scholar
  9. 9.
    Dalu, G., 1986: Satellite remote sensing of atmospheric water vapour. Int. J. of Remote Sensing, 7, 1089.Google Scholar
  10. 10.
    Gloersen, P., and Hardis, L. (1978). Scanning multichannel microwave radiometer (SMMR) experiment. Nimbus 7 Users’ Guide, C.R. Madrid, Ed., NASA/Goddard Space Flight Center, Greenbelt, 213–245.Google Scholar
  11. 11.
    Hanel, R.A., Conrath, B.G., Kunde, V.G., Prabhakara, C., Revah, I., Salomonson, V.V., and Wolford, G. (1972). The Nimbus 4 Infrared Spectroscopy Experiment, 1. Calibrated thermal emission spectra. J. geophys. Res., 77, 2629.CrossRefGoogle Scholar
  12. 12.
    McClain, E.P. (1981). Multiple atmospheric-window techniques for satellite sea surface temperatures. Proc. COSPAR/SCOR/IUCRMSymp.: Oceanography from Space, edited by J.F.R. Gower, Plenum Press, 73–85.Google Scholar
  13. 13.
    McMillin, L.M., and Crosby, D.S. (1984). Theory and validation of the multiple window sea surface temperature technique. J. geophys. Res., 89, 3655.Google Scholar
  14. 14.
    Nieman, R.A. (1977). A comparison of radiosonde temperature and humidity profile data bases. CSC/TM77/6133, Contract NAS 5-11999, Computer Sciences Corporation, pp. 48.Google Scholar
  15. 15.
    Peixoto, P.J., and Oort, A.H. (1992). Physics of Climate. American Institute of Physics, New York, p. 355.Google Scholar
  16. 16.
    Phillips, D. L. (1962). A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84.Google Scholar
  17. 17.
    Prabhakara, C., and Dalu, G. (1980). Passive remote sensing of the water vapor in the troposphere and its meteorological significance. In Atmospheric Water Vapor, edited by A. Deepak (New York: Academic Press), p. 355.Google Scholar
  18. 18.
    Prabhakara, C., Dalu, G., and Kunde, V.G. (1974). Estimation of sea surface temperature from remote sensing in the 11 to 13 μm window region. J. geophys. Res., 79, 5039.CrossRefGoogle Scholar
  19. 19.
    Prabhakara, C., Dalu, G., Lo, R.C., and Nath, N.R. (1979). Remote sensing of seasonal distribution of precipitable water vapor over the oceans and the inference of boundary-layer structure. Mon. Weath. Rev., 107, 1388.CrossRefGoogle Scholar
  20. 20.
    Smith, W. L. (1970). Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere. Appl. Opt. 9, 1993.Google Scholar
  21. 21.
    Twomey, S. (1963). On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 10, 97–101.Google Scholar
  22. 22.
    Waters, J. W., Kunzi, K.F., Pettyjohn, R. L., Poon, R. K. L., and Staelin, D. H. (1975). Remote sensing of atmospheric temperature profiles with the Nimbus 5 microwave spectrometer. J. Atmos. Sci., 32, 1953.CrossRefGoogle Scholar
  23. 23.
    Wilheit, T. T., Chang, A. T. C., and Milman, A. S. (1980). Atmospheric corrections to passive microwave observations of the ocean. Bound. Layer Meteorol., 18, 65.CrossRefGoogle Scholar
  24. 24.
    Wilheit, T.T., and Chang, A.T.C. (1980). An algorithm for retrieval of ocean surface and atmospheric parameters from the observation of the Scanning Multichannel Microwave Radiometer (SMMR). Radio Science, 15, 525.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Giuseppe Dalu
    • 1
  1. 1.Physics DepartmentIstituto di Scienze dell’Atmosfera e del ClimaMonserratoItaly

Personalised recommendations