Modelling Information Content Problems of the Radiative Transfer Theory

  • Rodolfo Guzzi
  • Oleg Smokty
Part of the Lecture Notes in Physics book series (LNP, volume 607)


It is shown that, the information content of environment data that have to be retrieved, by a satellite sensor, can be modeled on the basis of a joint mathematical description taking into account both the satellite sensors and measurements data trend, and the operators set related to mutually jointed direct-inverse problem solutions and the input optical models of the “atmosphere-underlying surface system”. An example, in which the atmospheric phase function is described by three terms (Rayleigh case) is also reported to show, as particular case, the feasibility of our approach


Information Content Radiative Transfer Phase Function Radiative Transfer Model Satellite Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smokty O., Guseinov G. The informational content and optimal plans for the Earth’s surface spectrometric remote sensing. SPIIRAS, preprinr N 157, St. Petersburg, 1993, 74 p.Google Scholar
  2. 2.
    Savinykh V. Visual and instrumentational investigation of the Earth from manned space station. Moscow, Nedra Publ., 1991, 108 p.Google Scholar
  3. 3.
    Smokty O., Fabrikov V. The methods of systems and transforms theory in optics. Publ.Co.Nauka, St.Petersburg, 1989, 312 p.Google Scholar
  4. 4.
    Cox I., Sheppard Y., Informational capacity and resolution in optical systems. JOSA, v.3, N 18, 1986, pp.1152–1164.Google Scholar
  5. 5.
    Kondratyev K., Buznikov A., Pokrovsky O. Global ecology: remote sensing. Russia, VINITI, v.14, 1992, 274 p.Google Scholar
  6. 6.
    Pokrovsky O. Determination of informational characteristics of sounding system from space. Russia, Atmospheric Optics, v.1, N 3, 1991, pp.227–235.Google Scholar
  7. 7.
    Kondratyev K., Pokrovsky O. The international Geosphere-Biosphere Programme: key aspects of requarements to data of observing the Earth from space. Izv.Acad.Sci. Russia, ser. Geography, issul 1, 1989, pp.20–35.Google Scholar
  8. 8.
    Kondratyev K., Kozoderov V., Smokty O. Remote sensing of the Earth from space: atmospheric correction. Springer Verlag, 1992, 592 p.Google Scholar
  9. 9.
    L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mc-Cann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 60,1998, pp. 665–710CrossRefGoogle Scholar
  10. 10.
    Levoni C., M. Cervino, R. Guzzi, F. Torricella Atmospheric aerosol optical properties: a Data base of radiative characteristics for different component and classes, Applied Optics, vol 36, 1997, pp 8031–8041CrossRefGoogle Scholar
  11. 11.
    Guzzi R., J Burrows, M. Cervino, T. Kurosu, F. Torricella 1995 A study of cloud detection ESA Rep 1 Contract 10997/94/NL/CNGoogle Scholar
  12. 12.
    Guzzi R., J Burrows, M. Cervino, C. Levoni, E. Cattani, T. Kurosu, F. Torricella GOME cloud and aerosol Data Products Algorithms Development ESA Contract 11572/95/NL/CN, 1998Google Scholar
  13. 13.
    Guzzi R., G. Ballista, W. Di Nicolantonio. Retrieval of aerosol profile by the mathematics of inversion in the remote sensing applied to atmospheres where multiple scattering occurs IGAARS’ 99 Hamburg Germany 28 June–2 July Remote Sensing of the System-Earth-A challenge fot the 21st Century, 1999, pp 366–368Google Scholar
  14. 14.
    Levoni C., E. Cattani, M. Cervino, R. Guzzi, Di Nicolantonio, F. Torricella. Effectiveness of the MS-method for computation of the intensity field reflected by a multi-layer plane-parallel atmosphere: results from an accelerated yet accurate radiative transfer code. J.Q.S.R.T 2001 v 4 pp636–649Google Scholar
  15. 15.
    R. Guzzi, G. Ballista, W. Dinicolantonio, E Carboni. Aerosol map from GOME data. Atmos. Environment. 2001, vol 35 N0 30, pp5079–5091CrossRefGoogle Scholar
  16. 16.
    Ignatov A. and L. Stowe Aerosol retrievals from individual AVHRR channels. Part I: retrieval algorithm and transition from Dave to 6S Radiative Transfer Model. J.A.S 2002 vol 59 pp.313–334Google Scholar
  17. 17.
    Ignatov A. and L. Stowe Aerosol retrievals from individual AVHRR channels. Part II: probability distribution functions, information content and consistency checks of retrieval. J.A.S 2002 vol 59 pp.335–362Google Scholar
  18. 18.
    Ignatov A. Sensitivity and information content of aerosol retrievals from AVHRR: radiometric factors. Applied Optics 2002 vol 41 pp991-10011.Google Scholar
  19. 19.
    Smokty O., Basic information content level for satellite ecological investigation. Proceedings ICI ECC’97, vol 3. St Peterburg, Russia,pp1337–1344, 1997Google Scholar
  20. 20.
    Smokty O. Applied mathematical problems of satellite data filtration and atmospheric correction Proceedings of Int. Atmos. Conf. on Satellite Data. Univ. Tokyo pp. 352–360, 1998Google Scholar
  21. 21.
    Smokty O. Modeling of radiation fields in the problem of space spectrophotometry. Pub.Co. Nauka, St.Petesburg, 1986, 352 p.Google Scholar
  22. 22.
    Press M., Flannery B., Teukolsky S., Vetterling W. Numerical recipes. The art of scientific computing (Fortran version). Cambridge Univ.Press, 1989,702 p.Google Scholar
  23. 23.
    Smokty O., Anikonov A., Ilyin A., Kobjakova N. The calibration models of the optical characteristics of the Earth’s atmosphere SPIIRAS, preprint N 158, St.Petersburg, 1992, 108 p.Google Scholar
  24. 24.
    Sobolev V. Light scattering in planetary atmospheres. Pergamon Press, 1975, 217 p.Google Scholar
  25. 25.
    King M. Number of terms required in the Fourier expansion of the reflection function for optically thick atmospheres. J. Quant. Spectrosc. Radiat. Transfer, v.30, N 2, 1983, pp.143–161.CrossRefGoogle Scholar
  26. 26.
    Smokty O.General mirror symmetry principle in radiative transfer theory Proceedings of IRS} 2000. St Petersburg, Pub. Co A. DeepakGoogle Scholar
  27. 27.
    Smokty O. Solving the inverse problem solutions of atmospheric optics an the basis of environment space remore sensing information. Proceedings of IRS 88 Lille France pp. 221–223, 1988Google Scholar
  28. 28.
    Smokty O. The angle-structure method of inverse problems solving of radiative transfer theory. IGARSS’93, Tokyo, 1993, pp.2155–2157.Google Scholar
  29. 29.
    Smokty O. Calibrated method of direct-inverse problem solutions for multiple scattering in a vertical uniform slab Proceedings IRS 2000, St Petersburg Russia. Publ. A. Deepak, 2001Google Scholar
  30. 30.
    Van de Hulst H.C. Multiple light scattering. Tables, Formulas and Applications Acad. Press, Orlando 1980Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rodolfo Guzzi
    • 1
  • Oleg Smokty
    • 2
  1. 1.Agenzia Spaziale Italiana ASI. RomaRomaItaly
  2. 2.Institute for Informatics and Automation of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations