Skip to main content

Electromagnetic Scattering by Nonspherical Particles

  • Chapter
  • First Online:
Exploring the Atmosphere by Remote Sensing Techniques

Part of the book series: Lecture Notes in Physics ((LNP,volume 607))

Abstract

The knowledge of absorption and scattering characteristics of small particles is required for a reliable evaluation of the climate forcing caused by clouds and aerosols as well as for studying the physical and chemical properties of atmospheric particulates using remote sensing techniques. Since many particles suspended in the atmosphere are nonspherical, their optical properties may not be adequately described by the classical Lorenz-Mie theory and must be determined using advanced theoretical and experimental techniques. In this chapter, we describe how electromagnetic scattering by small nonspherical particles can be computed and measured; analyze the main effects of nonsphericity on electromagnetic scattering; and discuss various implications of these effects in computations of the earth’s radiation balance and atmospheric remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Rizzo H. M. and Tranquilla J. M. (1995): Electromagnetic Wave Scattering by Highly Elongated and Geometrically Composite Objects of Large Size Parameters: The Generalized Multipole Technique. Appl. Opt. 34, 3502–3521.

    Google Scholar 

  2. Anderson T. L., Covert D. S., Marshall S. F. et al. (1996): Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer. J. Atmos. Oceanic Technol. 13, 967–986.

    Article  Google Scholar 

  3. Asano S. and Yamamoto G. (1975): Light Scattering by a Spheroidal Particle. Appl. Opt. 14, 29–49.

    Google Scholar 

  4. Aydin K. (2000): Centimeter and Millimeter Wave Scattering from Nonspherical Hydrometeors. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 451–479.

    Google Scholar 

  5. Baran A. J., Foot J. S. and Mitchell D. L. (1998): Ice-Crystal Absorption: A Comparison Between Theory and Implications for Remote Sensing. Appl. Opt. 37, 2207–2215.

    Article  Google Scholar 

  6. Berenger J.-P. (1996): Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 127, 363–379.

    Article  Google Scholar 

  7. Bohren C. F. and Singham S. B. (1991): Backscattering by Nonspherical Particles: A Review of Methods and Suggested New Approaches. J. Geophys. Res. 96, 5269–5277.

    Article  Google Scholar 

  8. Borghese F., Denti P., Toscano G. and Sindoni O. I. (1979): Electromagnetic Scattering by a Cluster of Spheres. Appl. Opt. 18, 116–120.

    Google Scholar 

  9. Borghese F., Denti P. and Saija R. (1994): Optical Properties of Spheres Containing Several Spherical Inclusions. Appl. Opt. 33, 484–493. [Errata: 34, 5556 (1995).]

    Google Scholar 

  10. Bringi V. N. and Chandrasekar V. (2001): Polarimetric Doppler Weather Radar: Principles and Applications (Cambridge Univ. Press, Cambridge).

    Google Scholar 

  11. Bruning, J. H., and Lo, Y. T. (1971): Multiple Scattering of EM Waves by Spheres. IEEE Trans. Antennas Propag. 19, 378–400.

    Article  Google Scholar 

  12. Chandrasekhar S. (1960): Radiative Transfer (Dover, New York).

    Google Scholar 

  13. Ciric I. A. and Cooray F. R. (2000): Separation of Variables for Electromagnetic Scattering by Spheroidal Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 89–130.

    Google Scholar 

  14. Cooray M. F. R. and Ciric I. R. (1992): Scattering of Electromagnetic Waves by a Coated Dielectric Spheroid. J. Electromagn. Waves Applic. 6, 1491–1507.

    Article  Google Scholar 

  15. de Haan J. F., Bosma P. B. and Hovenier J. W. (1987): The Adding Method for Multiple Scattering Calculations of Polarized Light. Astron. Astrophys. 183, 371–391.

    Google Scholar 

  16. de Rooij W. A. and van der Stap C. C. A. H. (1984): Expansion of Mie Scattering Matrices in Generalized Spherical Functions. Astron. Astrophys. 131, 237–248.

    Google Scholar 

  17. Deuzé J. L., Goloub P., Herman, M. et al. (2000): Estimate of the Aerosol Properties over the Ocean with POLDER. J. Geophys. Res. 105, 15329–15346.

    Article  Google Scholar 

  18. Doicu A., Eremin Yu. and Wriedt T. (2000): Acoustic andEle ctromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego).

    Google Scholar 

  19. Draine B. T. (2000): The Discrete Dipole Approximation for Light Scattering by Irregular Targets. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 131–145.

    Google Scholar 

  20. Draine B. T. and Flatau P. J. (1994): Discrete-Dipole Approximation for Scattering Calculations. J. Opt. Soc. Am. A 11, 1491–1499.

    Google Scholar 

  21. Evans K. F. and Stephens G. L. (1995): Microwave Radiative Transfer Through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering Properties. J. Atmos. Sci. 52, 2041–2057.

    Article  Google Scholar 

  22. Farafonov V. G., Voshchinnikov N. V. and Somsikov V. V. (1996): Light Scattering by a Core-Mantle Spheroidal Particle. Appl. Opt. 35, 5412–5426.

    Google Scholar 

  23. Flatau P. J. (2000): SCATTERLIB: Light Scattering Codes Library. URL: http://atol.ucsd.edu/~pflatau/scatlib/.

  24. Francis P. N. (1995): Some Aircraft Observations of the Scattering Properties of Ice Crystals. J. Atmos. Sci. 52, 1142–1154.

    Article  Google Scholar 

  25. Fu Q. (1996): An Accurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for Climate Modeling. J. Clim. 9, 2058–2082.

    Article  Google Scholar 

  26. Fucile E., Borghese F., Denti P. and Saija R. (1993): Theoretical Description of Dynamic Light Scattering From an Assembly of Large Axially Symmetric Particles. J. Opt. Soc. Am. A 10, 2611–2617.

    Google Scholar 

  27. Fuller K. A. (1991): Optical Resonances and Two-Sphere Systems.Appl. Opt. 33, 4716–4731.

    Google Scholar 

  28. Fuller K. A. (1995): Scattering and Absorption Cross Sections of Compounded Spheres. III. Spheres Containing Arbitrarily Located Spherical Inhomogeneities. J. Opt. Soc. Am. A 12, 893–904.

    Google Scholar 

  29. Fuller K. A. and Mackowski D. W. (2000): Electromagnetic Scattering by Compounded Spherical Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 225–272.

    Google Scholar 

  30. Gayet J.-F., Auriol F., Oshchepkov S. et al. (1998): In Situ Measurements of the Scattering Phase Function of Stratocumulus, Contrails, and Cirrus. Geophys. Res. Lett. 25, 971–974.

    Article  Google Scholar 

  31. Gobbi G. P., Donfrancesco G. D. and Adriani A. (1998): Physical Properties of Stratospheric Clouds during the Antarctic Winter of 1995. J. Geophys. Res. 103, 10859–10873.

    Article  Google Scholar 

  32. Gustafson B. Å. S. (2000): Microwave Analog to Light-Scattering Measurements. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 367–390.

    Google Scholar 

  33. Haferman J. L. (2000): Microwave Scattering by Precipitation. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 481–524.

    Google Scholar 

  34. Hansen J. E. and Travis L. D. (1974): Light Scattering in Planetary Atmospheres. Space Sci. Rev. 16, 527–610.

    Article  Google Scholar 

  35. Havemann S. and Baran A. J. (2001): Extension of T-Matrix to Scattering of Electromagnetic Plane Waves by Non-Axisymmetric Dielectric Particles: Application to Hexagonal Ice Cylinders. J. Quant. Spectrosc. Radiat. Transfer 70, 139–158.

    Article  Google Scholar 

  36. Hill S. C., Hill A. C. and Barber P. W. (1984): Light Scattering by Size/Shape Distributions of Soil Particles and Spheroids. Appl. Opt. 23, 1025–1031.

    Google Scholar 

  37. Holt A. R. (1982): The Scattering of Electromagnetic Waves by Single Hydrometeors. Radio Sci. 17, 929–945.

    Article  Google Scholar 

  38. Holt A. R., Uzunoglu N. K. and Evans B. G. (1978): An Integral Equation Solution to the Scattering of Electromagnetic Radiation by Dielectric Spheroids and Ellipsoids. IEEE Trans. Antennas Propag. 26, 706–712.

    Article  Google Scholar 

  39. Hovenier J. W. (2000): Measuring Scattering Matrices of Small Particles at Optical Wavelengths. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 355–365.

    Google Scholar 

  40. Hovenier J. W. and van der Mee C. V. M. (1983): Fundamental Relationships Relevant to the Transfer of Polarized Light in a Scattering Atmosphere. Astron. Astrophys. 128, 1–16.

    Google Scholar 

  41. Hovenier J. W. and van der Mee C. V. M. (2000): Basic Relationships for Matrices Describing Scattering by Small Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 61–85.

    Google Scholar 

  42. Hunt A. J. and Huffman D. R. (1973): A New Polarization-Modulated Light Scattering Instrument. Rev. Sci. Instrum. 44, 1753–1762.

    Article  Google Scholar 

  43. Jackson J. D. (1998): Classical Electrodynamics (Wiley, New York).

    Google Scholar 

  44. Jaggard D. L., Hill C., Shorthill R. W. et al. (1981): Light Scattering from Particles of Regular and Irregular Shape. Atmos. Environ. 15, 2511–2519.

    Article  Google Scholar 

  45. Jin J. (2002). The Finite Element Methodin Electromagnetics (Wiley, New York).

    Google Scholar 

  46. Joo K. and Iskander M. F. (1990): A New Procedure of Point-Matching Method for Calculating the Absorption and Scattering of Lossy Dielectric Objects. IEEE Trans. Antennas Propag. 38, 1483–1490.

    Article  Google Scholar 

  47. Jones A. R. (1999): Light Scattering for Particle Characterization. Progr. Energy Combust. Sci. 25, 1–53.

    Article  Google Scholar 

  48. Kahn R., West R., McDonald D. et al. (1997): Sensitivity of Multiangle Remote Sensing Observations to Aerosol Sphericity. J. Geophys. Res. 102, 16861–16870.

    Article  Google Scholar 

  49. Kahnert F. M., Stamnes J. J. and Stamnes K. (2001): Application of the Extended Boundary Condition Method to Homogeneous Particles with Point-Group Symmetries. Appl. Opt. 40, 3110–3123.

    Article  Google Scholar 

  50. Khlebtsov N. G. (1992): Orientational Averaging of Light-Scattering Observables in the T-Matrix Approach. Appl. Opt. 31, 5359–5365.

    Article  Google Scholar 

  51. Kokhanovsky A. A. (2001): Optics of Light Scattering Media: Problems and Solutions (Praxis, Chichester, UK).

    Google Scholar 

  52. Kunz K. S. and Luebbers R. J. (1993): Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL).

    Google Scholar 

  53. Kurtz V. and Salib S. (1993): Scattering and Absorption of Electromagnetic Radiation by Spheroidally Shaped Particles: Computation of the Scattering Properties. J. Imaging Sci. Technol. 37, 43–60.

    Google Scholar 

  54. Lacis A. A. and Mishchenko M. I. (1995): Climate Forcing, Climate Sensitivity, and Climate Response: A Radiative Modeling Perspective on Atmospheric Aerosols. Aerosol Forcing of Climate, eds. R. J. Charlson and J. Heintzenberg (Wiley, New York), pp. 11–42.

    Google Scholar 

  55. Laitinen H. and Lumme K. (1998): T-Matrix Method for General Star-Shaped Particles: First Results. J. Quant. Spectrosc. Radiat. Transfer 60, 325–334.

    Article  Google Scholar 

  56. Lakhtakia A. and Mulholland G. W. (1993): On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures. J. Res. Natl. Inst. Stand. Technol. 98, 699–716.

    Google Scholar 

  57. Li L.-W., Kang X.-K. and Leong M.-S. (2002): Spheroidal Wave Functions in Electromagnetic Theory (Wiley, New York).

    Google Scholar 

  58. Liou K.-N. and Lahore H. (1974): Laser Sensing of Cloud Composition: A Backscattered Depolarization Technique. J. Appl. Meteorol. 13, 257–263.

    Article  Google Scholar 

  59. Liou K. N., Takano Y. and Yang P. (2000): Light Scattering and Radiative Transfer in Ice Crystal Clouds: Applications to Climate Research. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 417–449.

    Google Scholar 

  60. Liu L. and Mishchenko M. I. (2001): Constraints on PSC Particle Microphysics Derived from Lidar Observations. J. Quant. Spectrosc. Radiat. Transfer 70, 817–831.

    Article  Google Scholar 

  61. Lumme K. (2000): Scattering Properties of Interplanetary Dust Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 555–583.

    Google Scholar 

  62. Macke A. (1993): Scattering of Light by Polyhedral Ice Crystals. Appl. Opt. 32, 2780–2788.

    Google Scholar 

  63. Macke A., Mueller J. and Raschke E. (1996). Scattering Properties of Atmospheric Ice Crystals. J. Atmos. Sci. 53, 2813–2825.

    Article  Google Scholar 

  64. Mackowski D. W. (1994): Calculation of Total Cross Sections of Multiple-Sphere Clusters. J. Opt. Soc. Am. A 11, 2851–2861.

    Google Scholar 

  65. Mackowski D. W. and Mishchenko M. I. (1996): Calculation of the T Matrix and the Scattering Matrix for Ensembles of Spheres. J. Opt. Soc. Am. A 13, 2266–2278.

    Google Scholar 

  66. Miller E. K., Medgyesi-Mitschang L. N. and Newman E. H. (1991): Computational Electromagnetics: Frequency Domain Methodof Moments (IEEE Press, New York).

    Google Scholar 

  67. Mishchenko M. I. (1991): Light Scattering by Randomly Oriented Axially Symmetric Particles. J. Opt. Soc. Am. A 8, 871–882. [Errata: 9, 497 (1992).]

    Google Scholar 

  68. Mishchenko M. I. and Hovenier J. W. (1995): Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles. Opt. Lett. 20, 1356–1358.

    Google Scholar 

  69. Mishchenko M. I. and Macke A. (1998): Incorporation of Physical Optics Effects and Computation of the Legendre Expansion for Ray-Tracing Phase Functions Involving δ-Function Transmission. J. Geophys. Res. 103, 1799–1805.

    Article  Google Scholar 

  70. Mishchenko M. I. and Macke A. (1999): How Big Should Hexagonal Ice Crystals Be to Produce Halos? Appl. Opt. 38, 1626–1629.

    Article  Google Scholar 

  71. Mishchenko M. I. and Sassen K. (1998): Depolarization of Lidar Returns by Small Ice Crystals: An Application to Contrails. Geophys. Res. Lett. 25, 309–312.

    Article  Google Scholar 

  72. Mishchenko M. I. and Travis L. D. (1998): Capabilities and Limitations of a Current FORTRAN Implementation of the T-Matrix Method for Randomly Oriented, Rotationally Symmetric Scatterers. J. Quant. Spectrosc. Radiat. Transfer 60, 309–324.

    Article  Google Scholar 

  73. Mishchenko M. I., Mackowski D. W. and Travis L. D. (1995): Scattering of Light by Bispheres with Touching and Separated Components. Appl. Opt. 34, 4589–4599.

    Google Scholar 

  74. Mishchenko M. I., Travis L. D. and Macke A. (1996a): Scattering of Light by Polydisperse, Randomly Oriented, Finite Circular Cylinders. Appl. Opt. 35, 4927–4940.

    Google Scholar 

  75. Mishchenko M. I., Travis L. D. and Mackowski D. W. (1996b): T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review. J. Quant. Spectrosc. Radiat. Transfer 55, 535–575.

    Article  Google Scholar 

  76. Mishchenko M. I., Rossow W. B., Make A. and Lacis A. A. (1996c): Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape. J. Geophys. Res. 101, 16973–16985.

    Article  Google Scholar 

  77. Mishchenko M. I., Travis L. D., Kahn R. A. and West R. A. (1997): Modeling Phase Functions for Dustlike Tropospheric Aerosols Using a Shape Mixture of Randomly Oriented Polydisperse Spheroids. J. Geophys. Res. 102, 16831–16847.

    Article  Google Scholar 

  78. Mishchenko M. I., Hovenier J. W. and Travis L. D., eds. (2000a): Light Scattering by Nonspherical Particles (Academic Press, San Diego).

    Google Scholar 

  79. Mishchenko M. I., Hovenier J. W. and Travis L. D. (2000b): Concepts, Terms, otation. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 3–27.

    Google Scholar 

  80. Mishchenko M. I., Travis L. D. and Lacis A. A. (2002): Scattering, Absorption, andEmission of Light by Small Particles (Cambridge Univ. Press, Cambridge).

    Google Scholar 

  81. Mitchell D. L., Macke A. and Liu Y. (1996): Modeling Cirrus Clouds. II: Treatment of Radiative Properties. J. Atmos. Sci. 53, 2967–2988.

    Article  Google Scholar 

  82. Morgan M. A. (1980): Finite Element Computation of Microwave Scattering by Raindrops. Radio Sci. 15, 1109–1119.

    Article  Google Scholar 

  83. Morrison J. A. and Cross M.-J. (1974): Scattering of a Plane Electromagnetic Wave by Axisymmetric Raindrops. Bell Syst. Tech. J. 53, 955–1019.

    Google Scholar 

  84. Muinonen K. (1989): Scattering of Light by Crystals: A Modified Kirchho. Approximation. Appl. Opt. 28, 3044–3050.

    Google Scholar 

  85. Muinonen K. (2000): Light Scattering by Stochastically Shaped Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 323–352.

    Google Scholar 

  86. Oguchi T. (1973): Scattering Properties of Oblate Raindrops and Cross Polarization of Radio Waves Due to Rain: Calculations at 19.3 and 34.8 GHz. J. Radio Res. Lab. Japan 20, 79–118.

    Google Scholar 

  87. Okamoto H., Macke A., Quante M. and Raschke E. (1995): Modeling of Backscattering by Nonspherical Ice Particles for the Interpretation of Cloud Radar Signals at 94 Ghz. An Error Analysis. Beitr. Phys. Atmos. 68, 319–334.

    Google Scholar 

  88. Onaka T. (1980): Light Scattering by Spheroidal Grains.Ann. Tokyo Astron. Observ. 18, 1–54.

    Google Scholar 

  89. Peltoniemi J. I., Lumme K., Muinonen K. and Irvine W. M. (1989): Scattering of Light by Stochastically Rough Particles. Appl. Opt. 28, 4088–4095.

    Google Scholar 

  90. Perry R. J., Hunt A. J. and Huffman D. R. (1978): Experimental Determination of Mueller Scattering Matrices for Nonspherical Particles. Appl. Opt. 17, 2700–2710.

    Google Scholar 

  91. Peterson B. and Ström S. (1973): T Matrix for Electromagnetic Scattering from an Arbitrary Number of Scatterers and Representations of E(3)*. Phys. Rev. D 8, 3661–3678.

    Article  Google Scholar 

  92. Peterson B. and Ström S. (1974): T-Matrix Formulation of Electromagnetic Scattering From Multilayered Scatterers. Phys. Rev. D 10, 2670–2684.

    Article  Google Scholar 

  93. Peterson A. F., Ray S. L. and Mittra R. (1998): Computational Methods for Electromagnetics (IEEE Press, New York).

    Google Scholar 

  94. Purcell E. M. and Pennypacker C. R. (1973): Scattering and Absorption of Light by Nonspherical Dielectric Grains. Astrophys. J. 186, 705–714.

    Article  Google Scholar 

  95. Quinby-Hunt M. S., Hull P. G. and Hunt A. J. (2000): Polarized Light Scattering in the Marine Environment. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 525–554.

    Google Scholar 

  96. Ravey J.-C. and Mazeron P. (1982): Light Scattering in the Physical Optics Approximation: Application to Large Spheroids. J. Opt. (Paris) 13, 273–282.

    Google Scholar 

  97. Rayleigh, Lord (1897): On the Incidence of Aerial and Electric Waves Upon Small Obstacles in the Form of Ellipsoids or Elliptic Cylinders, and on the Passage of Electric Waves through a Circular Aperture in a Conducting Screen. Phil. Mag. 44, 28–52.

    Google Scholar 

  98. Reagan J. A., McCormick M. P. and Spinhirne J. D. (1989): Lidar Sensing of Aerosols and Clouds in the Troposphere and Stratosphere. Proc. IEEE 77, 433–448.

    Google Scholar 

  99. Reichardt J., Tsias A. and Behrendt A. (2000): Optical Properties of PSC Ia-Enhanced at UV and Visible Wavelengths: Model and Observations. Geophys. Res. Lett. 27, 201–204.

    Article  Google Scholar 

  100. Rossow W. B. and Schiffer R. A. (1999): Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287.

    Article  Google Scholar 

  101. Sassen K. (2000): Lidar Backscatter Depolarization Technique for Cloud and Aerosol Research. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 393–416.

    Google Scholar 

  102. Sassen, K., Comstock, J. M., Wang, Zh., and Mace, G. G. (2001). Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Am. Meteorol. Soc. 82, 1119–1138.

    Article  Google Scholar 

  103. Saxon D. S. (1955a): Tensor Scattering Matrix for the Electromagnetic Field. Phys. Rev. 100, 1771–1775.

    Article  Google Scholar 

  104. Saxon D. S. (1955b): Lectures on the Scattering of Light (Scientific Report No. 9, Department of Meteorology, University of California at Los Angeles).

    Google Scholar 

  105. Silvester P. P. and Ferrari R. L. (1996): Finite Elements for Electrical Engineers (Cambridge Univ. Press, New York).

    Google Scholar 

  106. Stephens G. L. (1994): Remote Sensing of the Lower Atmosphere (Oxford Univ. Press, New York).

    Google Scholar 

  107. Sun W. and Fu Q. (2000): Finite-Difference Time-Domain Solution of Light Scattering by Dielectric Particles with Large Complex Refractive Indices.Appl. Opt. 39, 5569–5578.

    Article  Google Scholar 

  108. Taflove A. and Hagness S. C. (2000): Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston).

    Google Scholar 

  109. Takano Y. and Liou K. N. (1995): Solar Radiative Transfer in Cirrus Clouds. III: Light Scattering by Irregular Ice Crystals. J. Atmos. Sci. 52, 818–837.

    Article  Google Scholar 

  110. Tsang L., Kong J. A. and Shin R. T. (1985): Theory of Microwave Remote Sensing (Wiley, New York).

    Google Scholar 

  111. van de Hulst H. C. (1957): Light Scattering by Small Particles (Wiley, New York).

    Google Scholar 

  112. van der Mee C. V. M. and Hovenier J. W. (1990): Expansion Coeficients in Polarized Light Transfer. Astron. Astrophys. 228, 559–568.

    Google Scholar 

  113. Videen G., Ngo D., ChĂ½lek P. and Pinnick R. G. (1995): Light Scattering from a Sphere with an Irregular Inclusion. J. Opt. Soc. Am. A 12, 922–928.

    Google Scholar 

  114. Volakis J. L., Chatterjee A. and Kempel L. C. (1998): Finite Element Method for Electromagnetics (IEEE Press, New York).

    Google Scholar 

  115. Volten H., Muñoz O., Rol E. et al. (2001): Scattering Matrices of Mineral Aerosol Particles at 441.6 and 632.8 nm. J. Geophys. Res. 106, 17375–17402.

    Article  Google Scholar 

  116. Voshchinnikov N. V. and Farafonov V. G. (1993): Optical Properties of Spheroidal Particles. Astrophys. Space Sci. 204, 19–86.

    Article  Google Scholar 

  117. Waterman P. C. (1971): Symmetry, Unitarity, and Geometry in Electromagnetic Scattering. Phys. Rev. D. 3, 825–839.

    Article  Google Scholar 

  118. West R. A. (1991): Optical Properties of Aggregate Particles Whose Outer Diameter is Comparable to the Wavelength. Appl. Opt. 30, 5316–5324.

    Google Scholar 

  119. Wielaard D. J., Mishchenko M. I., Macke A. and Carlson B. E. (1997): Improved T-Matrix Computations for Large, Nonabsorbing and Weakly Absorbing Nonspherical Particles and Comparison with Geometrical-Optics Approximation. Appl. Opt. 36, 4305–4313.

    Article  Google Scholar 

  120. Wiscombe W. J. and Mugnai A. (1988): Scattering from Nonspherical Chebyshev Particles. 2: Means of Angular Scattering Patterns. Appl. Opt. 27, 2405–2421.

    Google Scholar 

  121. Wriedt T., ed. (1999): GeneralizedMultip ole Techniques for Electromagnetic andLight Scattering (Elsevier, Amsterdam).

    Google Scholar 

  122. Wriedt T. (2000): Electromagnetic Scattering Programs. URL: http://www.tmatrix.de.

  123. Yang P. and Liou K. N. (1996): Finite-Difference Time Domain Method for Light Scattering by Small Ice Crystals in Three-Dimensional Space. J. Opt. Soc. Am. A 13, 2072–2085.

    Google Scholar 

  124. Yang P. and Liou K. N. (2000): Finite Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 173–221.

    Google Scholar 

  125. Yee K. S. (1966): Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propag. 14, 302–307.

    Article  Google Scholar 

  126. Zakharova N. T. and Mishchenko M. I. (2000): Scattering Properties of Needlelike and Platelike Ice Spheroids with Moderate Size Parameters. Appl. Opt. 39, 5052–5057.

    Article  Google Scholar 

  127. Zakharova N. T. and Mishchenko M. I. (2001): Scattering by Randomly Oriented Thin Ice Disks with Moderate Equivalent-Sphere Size Parameters. J. Quant. Spectrosc. Radiat. Transfer 70, 465–471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mishchenko, M.I., Travis, L.D. (2003). Electromagnetic Scattering by Nonspherical Particles. In: Guzzi, R. (eds) Exploring the Atmosphere by Remote Sensing Techniques. Lecture Notes in Physics, vol 607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36536-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36536-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00709-8

  • Online ISBN: 978-3-540-36536-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics