Advertisement

Electromagnetic Scattering by Nonspherical Particles

  • Michael I. Mishchenko
  • Larry D. Travis
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 607)

Abstract

The knowledge of absorption and scattering characteristics of small particles is required for a reliable evaluation of the climate forcing caused by clouds and aerosols as well as for studying the physical and chemical properties of atmospheric particulates using remote sensing techniques. Since many particles suspended in the atmosphere are nonspherical, their optical properties may not be adequately described by the classical Lorenz-Mie theory and must be determined using advanced theoretical and experimental techniques. In this chapter, we describe how electromagnetic scattering by small nonspherical particles can be computed and measured; analyze the main effects of nonsphericity on electromagnetic scattering; and discuss various implications of these effects in computations of the earth’s radiation balance and atmospheric remote sensing.

Keywords

Phase Function Stokes Parameter Electromagnetic Scattering Nonspherical Particle Extinction Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Rizzo H. M. and Tranquilla J. M. (1995): Electromagnetic Wave Scattering by Highly Elongated and Geometrically Composite Objects of Large Size Parameters: The Generalized Multipole Technique. Appl. Opt. 34, 3502–3521.Google Scholar
  2. 2.
    Anderson T. L., Covert D. S., Marshall S. F. et al. (1996): Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer. J. Atmos. Oceanic Technol. 13, 967–986.CrossRefGoogle Scholar
  3. 3.
    Asano S. and Yamamoto G. (1975): Light Scattering by a Spheroidal Particle. Appl. Opt. 14, 29–49.Google Scholar
  4. 4.
    Aydin K. (2000): Centimeter and Millimeter Wave Scattering from Nonspherical Hydrometeors. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 451–479.Google Scholar
  5. 5.
    Baran A. J., Foot J. S. and Mitchell D. L. (1998): Ice-Crystal Absorption: A Comparison Between Theory and Implications for Remote Sensing. Appl. Opt. 37, 2207–2215.CrossRefGoogle Scholar
  6. 6.
    Berenger J.-P. (1996): Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 127, 363–379.CrossRefGoogle Scholar
  7. 7.
    Bohren C. F. and Singham S. B. (1991): Backscattering by Nonspherical Particles: A Review of Methods and Suggested New Approaches. J. Geophys. Res. 96, 5269–5277.CrossRefGoogle Scholar
  8. 8.
    Borghese F., Denti P., Toscano G. and Sindoni O. I. (1979): Electromagnetic Scattering by a Cluster of Spheres. Appl. Opt. 18, 116–120.Google Scholar
  9. 9.
    Borghese F., Denti P. and Saija R. (1994): Optical Properties of Spheres Containing Several Spherical Inclusions. Appl. Opt. 33, 484–493. [Errata: 34, 5556 (1995).]Google Scholar
  10. 10.
    Bringi V. N. and Chandrasekar V. (2001): Polarimetric Doppler Weather Radar: Principles and Applications (Cambridge Univ. Press, Cambridge).Google Scholar
  11. 11.
    Bruning, J. H., and Lo, Y. T. (1971): Multiple Scattering of EM Waves by Spheres. IEEE Trans. Antennas Propag. 19, 378–400.CrossRefGoogle Scholar
  12. 12.
    Chandrasekhar S. (1960): Radiative Transfer (Dover, New York).Google Scholar
  13. 13.
    Ciric I. A. and Cooray F. R. (2000): Separation of Variables for Electromagnetic Scattering by Spheroidal Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 89–130.Google Scholar
  14. 14.
    Cooray M. F. R. and Ciric I. R. (1992): Scattering of Electromagnetic Waves by a Coated Dielectric Spheroid. J. Electromagn. Waves Applic. 6, 1491–1507.CrossRefGoogle Scholar
  15. 15.
    de Haan J. F., Bosma P. B. and Hovenier J. W. (1987): The Adding Method for Multiple Scattering Calculations of Polarized Light. Astron. Astrophys. 183, 371–391.Google Scholar
  16. 16.
    de Rooij W. A. and van der Stap C. C. A. H. (1984): Expansion of Mie Scattering Matrices in Generalized Spherical Functions. Astron. Astrophys. 131, 237–248.Google Scholar
  17. 17.
    Deuzé J. L., Goloub P., Herman, M. et al. (2000): Estimate of the Aerosol Properties over the Ocean with POLDER. J. Geophys. Res. 105, 15329–15346.CrossRefGoogle Scholar
  18. 18.
    Doicu A., Eremin Yu. and Wriedt T. (2000): Acoustic andEle ctromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego).Google Scholar
  19. 19.
    Draine B. T. (2000): The Discrete Dipole Approximation for Light Scattering by Irregular Targets. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 131–145.Google Scholar
  20. 20.
    Draine B. T. and Flatau P. J. (1994): Discrete-Dipole Approximation for Scattering Calculations. J. Opt. Soc. Am. A 11, 1491–1499.Google Scholar
  21. 21.
    Evans K. F. and Stephens G. L. (1995): Microwave Radiative Transfer Through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering Properties. J. Atmos. Sci. 52, 2041–2057.CrossRefGoogle Scholar
  22. 22.
    Farafonov V. G., Voshchinnikov N. V. and Somsikov V. V. (1996): Light Scattering by a Core-Mantle Spheroidal Particle. Appl. Opt. 35, 5412–5426.Google Scholar
  23. 23.
    Flatau P. J. (2000): SCATTERLIB: Light Scattering Codes Library. URL: http://atol.ucsd.edu/~pflatau/scatlib/.
  24. 24.
    Francis P. N. (1995): Some Aircraft Observations of the Scattering Properties of Ice Crystals. J. Atmos. Sci. 52, 1142–1154.CrossRefGoogle Scholar
  25. 25.
    Fu Q. (1996): An Accurate Parameterization of the Solar Radiative Properties of Cirrus Clouds for Climate Modeling. J. Clim. 9, 2058–2082.CrossRefGoogle Scholar
  26. 26.
    Fucile E., Borghese F., Denti P. and Saija R. (1993): Theoretical Description of Dynamic Light Scattering From an Assembly of Large Axially Symmetric Particles. J. Opt. Soc. Am. A 10, 2611–2617.Google Scholar
  27. 27.
    Fuller K. A. (1991): Optical Resonances and Two-Sphere Systems.Appl. Opt. 33, 4716–4731.Google Scholar
  28. 28.
    Fuller K. A. (1995): Scattering and Absorption Cross Sections of Compounded Spheres. III. Spheres Containing Arbitrarily Located Spherical Inhomogeneities. J. Opt. Soc. Am. A 12, 893–904.Google Scholar
  29. 29.
    Fuller K. A. and Mackowski D. W. (2000): Electromagnetic Scattering by Compounded Spherical Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 225–272.Google Scholar
  30. 30.
    Gayet J.-F., Auriol F., Oshchepkov S. et al. (1998): In Situ Measurements of the Scattering Phase Function of Stratocumulus, Contrails, and Cirrus. Geophys. Res. Lett. 25, 971–974.CrossRefGoogle Scholar
  31. 31.
    Gobbi G. P., Donfrancesco G. D. and Adriani A. (1998): Physical Properties of Stratospheric Clouds during the Antarctic Winter of 1995. J. Geophys. Res. 103, 10859–10873.CrossRefGoogle Scholar
  32. 32.
    Gustafson B. Å. S. (2000): Microwave Analog to Light-Scattering Measurements. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 367–390.Google Scholar
  33. 33.
    Haferman J. L. (2000): Microwave Scattering by Precipitation. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 481–524.Google Scholar
  34. 34.
    Hansen J. E. and Travis L. D. (1974): Light Scattering in Planetary Atmospheres. Space Sci. Rev. 16, 527–610.CrossRefGoogle Scholar
  35. 35.
    Havemann S. and Baran A. J. (2001): Extension of T-Matrix to Scattering of Electromagnetic Plane Waves by Non-Axisymmetric Dielectric Particles: Application to Hexagonal Ice Cylinders. J. Quant. Spectrosc. Radiat. Transfer 70, 139–158.CrossRefGoogle Scholar
  36. 36.
    Hill S. C., Hill A. C. and Barber P. W. (1984): Light Scattering by Size/Shape Distributions of Soil Particles and Spheroids. Appl. Opt. 23, 1025–1031.Google Scholar
  37. 37.
    Holt A. R. (1982): The Scattering of Electromagnetic Waves by Single Hydrometeors. Radio Sci. 17, 929–945.CrossRefGoogle Scholar
  38. 38.
    Holt A. R., Uzunoglu N. K. and Evans B. G. (1978): An Integral Equation Solution to the Scattering of Electromagnetic Radiation by Dielectric Spheroids and Ellipsoids. IEEE Trans. Antennas Propag. 26, 706–712.CrossRefGoogle Scholar
  39. 39.
    Hovenier J. W. (2000): Measuring Scattering Matrices of Small Particles at Optical Wavelengths. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 355–365.Google Scholar
  40. 40.
    Hovenier J. W. and van der Mee C. V. M. (1983): Fundamental Relationships Relevant to the Transfer of Polarized Light in a Scattering Atmosphere. Astron. Astrophys. 128, 1–16.Google Scholar
  41. 41.
    Hovenier J. W. and van der Mee C. V. M. (2000): Basic Relationships for Matrices Describing Scattering by Small Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 61–85.Google Scholar
  42. 42.
    Hunt A. J. and Huffman D. R. (1973): A New Polarization-Modulated Light Scattering Instrument. Rev. Sci. Instrum. 44, 1753–1762.CrossRefGoogle Scholar
  43. 43.
    Jackson J. D. (1998): Classical Electrodynamics (Wiley, New York).Google Scholar
  44. 44.
    Jaggard D. L., Hill C., Shorthill R. W. et al. (1981): Light Scattering from Particles of Regular and Irregular Shape. Atmos. Environ. 15, 2511–2519.CrossRefGoogle Scholar
  45. 45.
    Jin J. (2002). The Finite Element Methodin Electromagnetics (Wiley, New York).Google Scholar
  46. 46.
    Joo K. and Iskander M. F. (1990): A New Procedure of Point-Matching Method for Calculating the Absorption and Scattering of Lossy Dielectric Objects. IEEE Trans. Antennas Propag. 38, 1483–1490.CrossRefGoogle Scholar
  47. 47.
    Jones A. R. (1999): Light Scattering for Particle Characterization. Progr. Energy Combust. Sci. 25, 1–53.CrossRefGoogle Scholar
  48. 48.
    Kahn R., West R., McDonald D. et al. (1997): Sensitivity of Multiangle Remote Sensing Observations to Aerosol Sphericity. J. Geophys. Res. 102, 16861–16870.CrossRefGoogle Scholar
  49. 49.
    Kahnert F. M., Stamnes J. J. and Stamnes K. (2001): Application of the Extended Boundary Condition Method to Homogeneous Particles with Point-Group Symmetries. Appl. Opt. 40, 3110–3123.CrossRefGoogle Scholar
  50. 50.
    Khlebtsov N. G. (1992): Orientational Averaging of Light-Scattering Observables in the T-Matrix Approach. Appl. Opt. 31, 5359–5365.CrossRefGoogle Scholar
  51. 51.
    Kokhanovsky A. A. (2001): Optics of Light Scattering Media: Problems and Solutions (Praxis, Chichester, UK).Google Scholar
  52. 52.
    Kunz K. S. and Luebbers R. J. (1993): Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL).Google Scholar
  53. 53.
    Kurtz V. and Salib S. (1993): Scattering and Absorption of Electromagnetic Radiation by Spheroidally Shaped Particles: Computation of the Scattering Properties. J. Imaging Sci. Technol. 37, 43–60.Google Scholar
  54. 54.
    Lacis A. A. and Mishchenko M. I. (1995): Climate Forcing, Climate Sensitivity, and Climate Response: A Radiative Modeling Perspective on Atmospheric Aerosols. Aerosol Forcing of Climate, eds. R. J. Charlson and J. Heintzenberg (Wiley, New York), pp. 11–42.Google Scholar
  55. 55.
    Laitinen H. and Lumme K. (1998): T-Matrix Method for General Star-Shaped Particles: First Results. J. Quant. Spectrosc. Radiat. Transfer 60, 325–334.CrossRefGoogle Scholar
  56. 56.
    Lakhtakia A. and Mulholland G. W. (1993): On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures. J. Res. Natl. Inst. Stand. Technol. 98, 699–716.Google Scholar
  57. 57.
    Li L.-W., Kang X.-K. and Leong M.-S. (2002): Spheroidal Wave Functions in Electromagnetic Theory (Wiley, New York).Google Scholar
  58. 58.
    Liou K.-N. and Lahore H. (1974): Laser Sensing of Cloud Composition: A Backscattered Depolarization Technique. J. Appl. Meteorol. 13, 257–263.CrossRefGoogle Scholar
  59. 59.
    Liou K. N., Takano Y. and Yang P. (2000): Light Scattering and Radiative Transfer in Ice Crystal Clouds: Applications to Climate Research. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 417–449.Google Scholar
  60. 60.
    Liu L. and Mishchenko M. I. (2001): Constraints on PSC Particle Microphysics Derived from Lidar Observations. J. Quant. Spectrosc. Radiat. Transfer 70, 817–831.CrossRefGoogle Scholar
  61. 61.
    Lumme K. (2000): Scattering Properties of Interplanetary Dust Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 555–583.Google Scholar
  62. 62.
    Macke A. (1993): Scattering of Light by Polyhedral Ice Crystals. Appl. Opt. 32, 2780–2788.Google Scholar
  63. 63.
    Macke A., Mueller J. and Raschke E. (1996). Scattering Properties of Atmospheric Ice Crystals. J. Atmos. Sci. 53, 2813–2825.CrossRefGoogle Scholar
  64. 64.
    Mackowski D. W. (1994): Calculation of Total Cross Sections of Multiple-Sphere Clusters. J. Opt. Soc. Am. A 11, 2851–2861.Google Scholar
  65. 65.
    Mackowski D. W. and Mishchenko M. I. (1996): Calculation of the T Matrix and the Scattering Matrix for Ensembles of Spheres. J. Opt. Soc. Am. A 13, 2266–2278.Google Scholar
  66. 66.
    Miller E. K., Medgyesi-Mitschang L. N. and Newman E. H. (1991): Computational Electromagnetics: Frequency Domain Methodof Moments (IEEE Press, New York).Google Scholar
  67. 67.
    Mishchenko M. I. (1991): Light Scattering by Randomly Oriented Axially Symmetric Particles. J. Opt. Soc. Am. A 8, 871–882. [Errata: 9, 497 (1992).]Google Scholar
  68. 68.
    Mishchenko M. I. and Hovenier J. W. (1995): Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles. Opt. Lett. 20, 1356–1358.Google Scholar
  69. 69.
    Mishchenko M. I. and Macke A. (1998): Incorporation of Physical Optics Effects and Computation of the Legendre Expansion for Ray-Tracing Phase Functions Involving δ-Function Transmission. J. Geophys. Res. 103, 1799–1805.CrossRefGoogle Scholar
  70. 70.
    Mishchenko M. I. and Macke A. (1999): How Big Should Hexagonal Ice Crystals Be to Produce Halos? Appl. Opt. 38, 1626–1629.CrossRefGoogle Scholar
  71. 71.
    Mishchenko M. I. and Sassen K. (1998): Depolarization of Lidar Returns by Small Ice Crystals: An Application to Contrails. Geophys. Res. Lett. 25, 309–312.CrossRefGoogle Scholar
  72. 72.
    Mishchenko M. I. and Travis L. D. (1998): Capabilities and Limitations of a Current FORTRAN Implementation of the T-Matrix Method for Randomly Oriented, Rotationally Symmetric Scatterers. J. Quant. Spectrosc. Radiat. Transfer 60, 309–324.CrossRefGoogle Scholar
  73. 73.
    Mishchenko M. I., Mackowski D. W. and Travis L. D. (1995): Scattering of Light by Bispheres with Touching and Separated Components. Appl. Opt. 34, 4589–4599.Google Scholar
  74. 74.
    Mishchenko M. I., Travis L. D. and Macke A. (1996a): Scattering of Light by Polydisperse, Randomly Oriented, Finite Circular Cylinders. Appl. Opt. 35, 4927–4940.Google Scholar
  75. 75.
    Mishchenko M. I., Travis L. D. and Mackowski D. W. (1996b): T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review. J. Quant. Spectrosc. Radiat. Transfer 55, 535–575.CrossRefGoogle Scholar
  76. 76.
    Mishchenko M. I., Rossow W. B., Make A. and Lacis A. A. (1996c): Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape. J. Geophys. Res. 101, 16973–16985.CrossRefGoogle Scholar
  77. 77.
    Mishchenko M. I., Travis L. D., Kahn R. A. and West R. A. (1997): Modeling Phase Functions for Dustlike Tropospheric Aerosols Using a Shape Mixture of Randomly Oriented Polydisperse Spheroids. J. Geophys. Res. 102, 16831–16847.CrossRefGoogle Scholar
  78. 78.
    Mishchenko M. I., Hovenier J. W. and Travis L. D., eds. (2000a): Light Scattering by Nonspherical Particles (Academic Press, San Diego).Google Scholar
  79. 79.
    Mishchenko M. I., Hovenier J. W. and Travis L. D. (2000b): Concepts, Terms, otation. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 3–27.Google Scholar
  80. 80.
    Mishchenko M. I., Travis L. D. and Lacis A. A. (2002): Scattering, Absorption, andEmission of Light by Small Particles (Cambridge Univ. Press, Cambridge).Google Scholar
  81. 81.
    Mitchell D. L., Macke A. and Liu Y. (1996): Modeling Cirrus Clouds. II: Treatment of Radiative Properties. J. Atmos. Sci. 53, 2967–2988.CrossRefGoogle Scholar
  82. 82.
    Morgan M. A. (1980): Finite Element Computation of Microwave Scattering by Raindrops. Radio Sci. 15, 1109–1119.CrossRefGoogle Scholar
  83. 83.
    Morrison J. A. and Cross M.-J. (1974): Scattering of a Plane Electromagnetic Wave by Axisymmetric Raindrops. Bell Syst. Tech. J. 53, 955–1019.Google Scholar
  84. 84.
    Muinonen K. (1989): Scattering of Light by Crystals: A Modified Kirchho. Approximation. Appl. Opt. 28, 3044–3050.Google Scholar
  85. 85.
    Muinonen K. (2000): Light Scattering by Stochastically Shaped Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 323–352.Google Scholar
  86. 86.
    Oguchi T. (1973): Scattering Properties of Oblate Raindrops and Cross Polarization of Radio Waves Due to Rain: Calculations at 19.3 and 34.8 GHz. J. Radio Res. Lab. Japan 20, 79–118.Google Scholar
  87. 87.
    Okamoto H., Macke A., Quante M. and Raschke E. (1995): Modeling of Backscattering by Nonspherical Ice Particles for the Interpretation of Cloud Radar Signals at 94 Ghz. An Error Analysis. Beitr. Phys. Atmos. 68, 319–334.Google Scholar
  88. 88.
    Onaka T. (1980): Light Scattering by Spheroidal Grains.Ann. Tokyo Astron. Observ. 18, 1–54.Google Scholar
  89. 89.
    Peltoniemi J. I., Lumme K., Muinonen K. and Irvine W. M. (1989): Scattering of Light by Stochastically Rough Particles. Appl. Opt. 28, 4088–4095.Google Scholar
  90. 90.
    Perry R. J., Hunt A. J. and Huffman D. R. (1978): Experimental Determination of Mueller Scattering Matrices for Nonspherical Particles. Appl. Opt. 17, 2700–2710.Google Scholar
  91. 91.
    Peterson B. and Ström S. (1973): T Matrix for Electromagnetic Scattering from an Arbitrary Number of Scatterers and Representations of E(3)*. Phys. Rev. D 8, 3661–3678.CrossRefGoogle Scholar
  92. 92.
    Peterson B. and Ström S. (1974): T-Matrix Formulation of Electromagnetic Scattering From Multilayered Scatterers. Phys. Rev. D 10, 2670–2684.CrossRefGoogle Scholar
  93. 93.
    Peterson A. F., Ray S. L. and Mittra R. (1998): Computational Methods for Electromagnetics (IEEE Press, New York).Google Scholar
  94. 94.
    Purcell E. M. and Pennypacker C. R. (1973): Scattering and Absorption of Light by Nonspherical Dielectric Grains. Astrophys. J. 186, 705–714.CrossRefGoogle Scholar
  95. 95.
    Quinby-Hunt M. S., Hull P. G. and Hunt A. J. (2000): Polarized Light Scattering in the Marine Environment. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 525–554.Google Scholar
  96. 96.
    Ravey J.-C. and Mazeron P. (1982): Light Scattering in the Physical Optics Approximation: Application to Large Spheroids. J. Opt. (Paris) 13, 273–282.Google Scholar
  97. 97.
    Rayleigh, Lord (1897): On the Incidence of Aerial and Electric Waves Upon Small Obstacles in the Form of Ellipsoids or Elliptic Cylinders, and on the Passage of Electric Waves through a Circular Aperture in a Conducting Screen. Phil. Mag. 44, 28–52.Google Scholar
  98. 98.
    Reagan J. A., McCormick M. P. and Spinhirne J. D. (1989): Lidar Sensing of Aerosols and Clouds in the Troposphere and Stratosphere. Proc. IEEE 77, 433–448.Google Scholar
  99. 99.
    Reichardt J., Tsias A. and Behrendt A. (2000): Optical Properties of PSC Ia-Enhanced at UV and Visible Wavelengths: Model and Observations. Geophys. Res. Lett. 27, 201–204.CrossRefGoogle Scholar
  100. 100.
    Rossow W. B. and Schiffer R. A. (1999): Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287.CrossRefGoogle Scholar
  101. 101.
    Sassen K. (2000): Lidar Backscatter Depolarization Technique for Cloud and Aerosol Research. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 393–416.Google Scholar
  102. 102.
    Sassen, K., Comstock, J. M., Wang, Zh., and Mace, G. G. (2001). Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Am. Meteorol. Soc. 82, 1119–1138.CrossRefGoogle Scholar
  103. 103.
    Saxon D. S. (1955a): Tensor Scattering Matrix for the Electromagnetic Field. Phys. Rev. 100, 1771–1775.CrossRefGoogle Scholar
  104. 104.
    Saxon D. S. (1955b): Lectures on the Scattering of Light (Scientific Report No. 9, Department of Meteorology, University of California at Los Angeles).Google Scholar
  105. 105.
    Silvester P. P. and Ferrari R. L. (1996): Finite Elements for Electrical Engineers (Cambridge Univ. Press, New York).Google Scholar
  106. 106.
    Stephens G. L. (1994): Remote Sensing of the Lower Atmosphere (Oxford Univ. Press, New York).Google Scholar
  107. 107.
    Sun W. and Fu Q. (2000): Finite-Difference Time-Domain Solution of Light Scattering by Dielectric Particles with Large Complex Refractive Indices.Appl. Opt. 39, 5569–5578.CrossRefGoogle Scholar
  108. 108.
    Taflove A. and Hagness S. C. (2000): Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston).Google Scholar
  109. 109.
    Takano Y. and Liou K. N. (1995): Solar Radiative Transfer in Cirrus Clouds. III: Light Scattering by Irregular Ice Crystals. J. Atmos. Sci. 52, 818–837.CrossRefGoogle Scholar
  110. 110.
    Tsang L., Kong J. A. and Shin R. T. (1985): Theory of Microwave Remote Sensing (Wiley, New York).Google Scholar
  111. 111.
    van de Hulst H. C. (1957): Light Scattering by Small Particles (Wiley, New York).Google Scholar
  112. 112.
    van der Mee C. V. M. and Hovenier J. W. (1990): Expansion Coeficients in Polarized Light Transfer. Astron. Astrophys. 228, 559–568.Google Scholar
  113. 113.
    Videen G., Ngo D., Chýlek P. and Pinnick R. G. (1995): Light Scattering from a Sphere with an Irregular Inclusion. J. Opt. Soc. Am. A 12, 922–928.Google Scholar
  114. 114.
    Volakis J. L., Chatterjee A. and Kempel L. C. (1998): Finite Element Method for Electromagnetics (IEEE Press, New York).Google Scholar
  115. 115.
    Volten H., Muñoz O., Rol E. et al. (2001): Scattering Matrices of Mineral Aerosol Particles at 441.6 and 632.8 nm. J. Geophys. Res. 106, 17375–17402.CrossRefGoogle Scholar
  116. 116.
    Voshchinnikov N. V. and Farafonov V. G. (1993): Optical Properties of Spheroidal Particles. Astrophys. Space Sci. 204, 19–86.CrossRefGoogle Scholar
  117. 117.
    Waterman P. C. (1971): Symmetry, Unitarity, and Geometry in Electromagnetic Scattering. Phys. Rev. D. 3, 825–839.CrossRefGoogle Scholar
  118. 118.
    West R. A. (1991): Optical Properties of Aggregate Particles Whose Outer Diameter is Comparable to the Wavelength. Appl. Opt. 30, 5316–5324.Google Scholar
  119. 119.
    Wielaard D. J., Mishchenko M. I., Macke A. and Carlson B. E. (1997): Improved T-Matrix Computations for Large, Nonabsorbing and Weakly Absorbing Nonspherical Particles and Comparison with Geometrical-Optics Approximation. Appl. Opt. 36, 4305–4313.CrossRefGoogle Scholar
  120. 120.
    Wiscombe W. J. and Mugnai A. (1988): Scattering from Nonspherical Chebyshev Particles. 2: Means of Angular Scattering Patterns. Appl. Opt. 27, 2405–2421.Google Scholar
  121. 121.
    Wriedt T., ed. (1999): GeneralizedMultip ole Techniques for Electromagnetic andLight Scattering (Elsevier, Amsterdam).Google Scholar
  122. 122.
    Wriedt T. (2000): Electromagnetic Scattering Programs. URL: http://www.tmatrix.de.
  123. 123.
    Yang P. and Liou K. N. (1996): Finite-Difference Time Domain Method for Light Scattering by Small Ice Crystals in Three-Dimensional Space. J. Opt. Soc. Am. A 13, 2072–2085.Google Scholar
  124. 124.
    Yang P. and Liou K. N. (2000): Finite Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles. Light Scattering by Nonspherical Particles, eds. M. I. Mishchenko, J. W. Hovenier and L. D. Travis (Academic Press, San Diego), pp. 173–221.Google Scholar
  125. 125.
    Yee K. S. (1966): Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propag. 14, 302–307.CrossRefGoogle Scholar
  126. 126.
    Zakharova N. T. and Mishchenko M. I. (2000): Scattering Properties of Needlelike and Platelike Ice Spheroids with Moderate Size Parameters. Appl. Opt. 39, 5052–5057.CrossRefGoogle Scholar
  127. 127.
    Zakharova N. T. and Mishchenko M. I. (2001): Scattering by Randomly Oriented Thin Ice Disks with Moderate Equivalent-Sphere Size Parameters. J. Quant. Spectrosc. Radiat. Transfer 70, 465–471.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael I. Mishchenko
    • 1
  • Larry D. Travis
    • 1
  1. 1.NASA Goddard Institute for Space StudiesNew YorkUSA

Personalised recommendations