A Review of Forward-Modeling Requirements

  • Knut Stamnes
Part of the Lecture Notes in Physics book series (LNP, volume 607)


A reviewis provided of forward modeling capabilities and requirements in connection with remote sensing of the environment. Emphasis is placed on the formulation of the problem and on discussion of recent developments. The planeparallel radiative transfer model is used as a specific example of a forward model that is simple yet very useful. A solution to this forward model is outlined by using the discrete ordinate method. A linearized version of this discrete ordinate solution that provides analytic weighting functions or Jacobians in addition to radiances is also briefly discussed. This provides a framework for a discussion of computational resource and accuracy requirements.


Radiative Transfer Forward Model Solar Zenith Angle Radiative Transfer Equation Discrete Ordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D. E., The troposphere-stratosphere radiation field at twilight: A spherical model, Planet. Space Sci., 31, 1517, 1983.CrossRefGoogle Scholar
  2. 2.
    Dahlback, A. and K. Stamnes, A newspherical model for computing the radiation field available for photolysis and heating at twilight, Planet. Space Sci., 39, 671–683, 1991.CrossRefGoogle Scholar
  3. 3.
    Dubovik, O. and M. D. King, A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 2000.CrossRefGoogle Scholar
  4. 4.
    Dubovik, O. B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Geophys. Res., 59, 590–608, 2001.Google Scholar
  5. 5.
    de Haan, J. F., P. B. Bosma, and J. W. Hovenier, The adding method for multiple scattering of polarized light, Astron. Astrophys., 183, 371–391, 1987.Google Scholar
  6. 6.
    Frette, O., J. J. Stamnes, and K. Stamnes, Optical remote sensing of marine constituents in coastal waters: A feasibility study, Appl. Opt., 37, 8218–8326, 1998.CrossRefGoogle Scholar
  7. 7.
    Frette, O., S. R. Erga, J. J. Stamnes, and K. Stamnes, Optical remote sensing of waters with vertical structure, Appl. Opt., 40, 1478–1487, 2001.CrossRefGoogle Scholar
  8. 8.
    Garcia, R. D. M., and C. E. Siewert, A generalized spherical harmonics solution for radiative transfer models that include polarization, J. Quant. Spectrosc. Radiat. Transfer, 401–423, 1986.Google Scholar
  9. 9.
    Gjerstad, K. I., J. J. Stamnes, J. K. Lotsberg, B. Hamre, B. Yan, and K Stamnes, Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system, Appl. Opt., submitted, 2002.Google Scholar
  10. 10.
    Gobron, N., B. Pinty, M. M. Verstraete, and J.-L. Widlowski, Advanced vegatation indices optimized for upcoming sensors: Design, performance, and applications, IEEE, Trans. Geosci. Remote Sensing, 38, 2489–2505, 2000a.CrossRefGoogle Scholar
  11. 11.
    Gobron, N., B. Pinty, M. M. Verstraete, and J. V. Martonchik, Y. Knyazikhin, and D. J. Diner, Potential of multiangular spectral measurements to land surfaces: Conceptual approach and exploratory application, J. Geophys. Res., 105, 17539–17549, 2000b.CrossRefGoogle Scholar
  12. 12.
    Gordon H. R., Atmospheric correction of ocean color imagery in the Earth Observing System era, J. Geophys. Res., 102, 17,081–17,106, 1997.Google Scholar
  13. 13.
    Hansen, P. C., Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion, SIAM monographs on mathematical modeling and computation, Society for Industrial and Applied Mathematics, Philadelphia, 1998.Google Scholar
  14. 14.
    Hansen, J. E. and L. D. Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, 1974.CrossRefGoogle Scholar
  15. 15.
    Han, Q., W. B. Rossow, and A. A. Lacis, Near-global survey of effective droplet radius in liquid water clouds using ISCCP data, J. Climate, 7, 465–497, 1994.CrossRefGoogle Scholar
  16. 16.
    Han, W., K. Stamnes, and D. Lubin, Remote sensing of surface and cloud properties in the Arctic from NOAA AVHRR measurements, J. Appl. Meteor., 38, 989–1012, 1999.CrossRefGoogle Scholar
  17. 17.
    Herman, B. M., T. R. Caudill, D. E. Flittner, K. J. Thome, and A. Ben-David, A comparison of the Gauss-Seidel spherical polarized radiative transfer code with other radiative transfer codes, Appl. Opt., 34, 4563–4572, 1995.CrossRefGoogle Scholar
  18. 18.
    Hori, M., T. Aoki, K. Stamnes, B. Chen, and W. Li, Preliminary validation of the GLI Cryosphere Algorithms with MODIS daytime data, Polar Meteorol. Glaciol., 15, 1–20, 2001.Google Scholar
  19. 19.
    Hu, Y.-X., B. Wielicki, B. Lin, G. Gibson, S.-C. Tsay, K. Stamnes, and T. Wong, Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least squares fitting, J. Quant. Spectrosc. Radiat. Transfer, 681–690, 2000.Google Scholar
  20. 20.
    Jin, Z., and K. Stamnes, Radiative transfer in nonuniformly refracting media such as the atmosphere/ocean system, Appl. Opt., 33, 431–442, 1994.Google Scholar
  21. 21.
    Kaufman, and Coauthors, Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. Geophys. Res., 102, 16815–16830, 1997.CrossRefGoogle Scholar
  22. 22.
    King, M. D., Y. J. Kaufman, D. Tanré, and T. Nakajima, Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80, 1479–1483, 1999.CrossRefGoogle Scholar
  23. 23.
    Labonnote, L. C., G. Brogniez, J.-F. Gayet, M. Doutriaux-Boucher, and J. C. Buriez, Modeling aof light scattering in cirrus clouds with inhomogeneoes hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements, Geophys. Res. Lett., 27, 113–116, 2000.Google Scholar
  24. 24.
    Levoni, C., E. Cattani, M. Cervino, R. Guzzi, W. Nicolantonio, Effectiveness of the MS-method for computation of the intensity field reflected by a multi-layer plane-parallel atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 69, 635–650, 2001.CrossRefGoogle Scholar
  25. 25.
    Li, W, K. Stamnes, B. Chen, and X. Xiong, Retrieval of the depth dependence of snowgrain size from near-infrared radiances at multiple wavelengths, Geophys. Res. Lett., 28, 1699–1702, 2001.CrossRefGoogle Scholar
  26. 26.
    Li W., and K. Stamnes, Inherent optical properties of Case 1 waters: A complete model suitable for use in ocean color remote sensing applications, J. Geophys. Res., submitted, 2002.Google Scholar
  27. 27.
    Minnis, P., D. P. Garber, D. F. Young, R. F. Arduini, and Y. Takano, Parameterization of reflectance and effective emittance for satellite remote sensing of clouds properties. J. Atmos. Sci., 55, 3313–3339, 1998.CrossRefGoogle Scholar
  28. 28.
    Mobley, C. D., B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, Comparison of numerical models for computing underwater light fields, Appl. Opt., 32, 7484–7504, 1993.Google Scholar
  29. 29.
    Morel, A., and S. Maritorena, Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res., 106, 7163–7180, 2001.CrossRefGoogle Scholar
  30. 30.
    Nakajima, T., and M. D. King, Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, J. Atmos. Sci., 47, 1878–1893, 1990.CrossRefGoogle Scholar
  31. 31.
    Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements, Part II, Marine stratocumulus observations, J. Atmos. Sci., 48, 728–750, 1991.CrossRefGoogle Scholar
  32. 32.
    Oikarinen, L., Polarization of light in uv-visible limb radiance measurments, J. Geophys., Res., 106, 1533–1544, 2001.CrossRefGoogle Scholar
  33. 33.
    Pinty, B., F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V. Martonchik, D. J. Diner, R. A. Kahn, Surface albedo retrieval from Meteosat 1. Theory, J. Geophys. Res., 105, 18099–18112, 2000a.CrossRefGoogle Scholar
  34. 34.
    Pinty, B., F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V. Martonchik, D. J. Diner, R. A. Kahn, Surface albedo retrieval from Meteosat 2. Applications, J. Geophys. Res., 105, 18113–18134, 2000b.CrossRefGoogle Scholar
  35. 35.
    Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. Hobbs, A solar reflectance method for retrieving the optical thickness and droplet size and liquid water clouds overs snowand ice surfaces. J. Geophys. Res., 106, 15 185–15 199, 2001.CrossRefGoogle Scholar
  36. 36.
    Rodgers, C., Inverse methods for atmospheric sounding: Theory and practice, World Scientific, Singapore, 2000.Google Scholar
  37. 37.
    Schulz, F. M., K. Stamnes, and F. Weng, VDISORT: An improved and generalized discrete ordinate radiative transfer model for polarized (vector) radiative transfer computations, J. Quant. Spectrosc. Radiat. Transfer, 61, 105–122, 1999.CrossRefGoogle Scholar
  38. 38.
    Schulz, F. M., and K. Stamnes, Angular distribution of the Stokes vector in a plane parallel, vertically inhomogeneous medium in the vector discrete ordinate radiative transfer (VDISORT) model, J. Quant. Spectrosc. Radiat. Transfer, 65, 609–620, 2000.CrossRefGoogle Scholar
  39. 39.
    Siewert, C. E., A discrete-ordinates solution for radiative-transfer models that include polarization effects, J. Quant. Spectrosc. Radiat. Transfer, 64, 227–254, 2000.CrossRefGoogle Scholar
  40. 40.
    Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, Y. Slotsker, C. Pietras, and R. N. Halthore, Optical properties of atmospheric aerosol in maritime environments, J. Atmos. Sci., 501–523, 2002.Google Scholar
  41. 41.
    Spurr, R. J. D., Linearized Radiative Transfer Theory: A General Discrete Ordinate Approach to the Calculation of Radiances and Analytic Weighting Functions, with Application to Atmospheric Remote Sensing, Ph. D. thesis, Eindhoven Technical University, 2001a.Google Scholar
  42. 42.
    Spurr, R. J. D., Simultaneous radiative transfer derivation of intensities and weighting functions in a general pseudo-spherical treatment, J. Quant. Spectrosc. Radiat. Transfer, in press, 2001b.Google Scholar
  43. 43.
    Spurr, R. J. D., T. P. Kurosu, and K. V. Chance, A linearized discrete ordinate radiative transfer model for atmospheric remote sensing retrieval, J. Quant. Spectrosc. Radiat. Transfer, 68, 689–735, 2001.CrossRefGoogle Scholar
  44. 44.
    Stamnes, K., S.-C. Tsay, W.J. Wiscombe and K. Jayaweera, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502–2509, 1988.Google Scholar
  45. 45.
    Stamnes, K., S.-C. Tsay, W. J. Wiscombe and I. Laszlo, DISORT, A General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Report, available from, 2000.
  46. 46.
    Stamnes, K., W. Li, B. Yan, A. Barnard, W. S. Pegau and J. J. Stamnes, Accurate and self-consistent ocean color algorithm: Simultaneous retrieval of aerosol optical properties and chlorophyll concentrations, Appl. Opt, in press, 2002.Google Scholar
  47. 47.
    Thomas, G. E., and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, 1999.Google Scholar
  48. 48.
    Torricella, F., E. Cattani, M. Cervino, R. Guzzi, C. Levoni, Retrieval of aerosol properties over the ocean using Global Ozone Monitoring Experiment measurements: Method and application to test cases, J. Geophys. Res., 104, 12085–12098, 1999.CrossRefGoogle Scholar
  49. 49.
    Torres, O., P. K. Barthia, J. R. Herman, Z. Ahmad, and J. Gleason, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103, 17099–17110, 1998.CrossRefGoogle Scholar
  50. 50.
    Weng, F., A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. Part I: Theory, J. Quant. Spec. Radiat. Trans., 47, 19–33, 1992.CrossRefGoogle Scholar
  51. 51.
    Weng, F., and N. C. Grody, Retrieval of ice cloud parameters using a microwave imaging radiometer, J. Atmos. Sci., 57,1069–1081, 2000.CrossRefGoogle Scholar
  52. 52.
    Weng, F., B. Yan, and N. Grody, A microwave land emissivity model, J. Geophys. Res., 106, 20,115–20,123, 2001.CrossRefGoogle Scholar
  53. 53.
    Xiong,_X., K. Stamnes, and D. Lubin, Surface Albedo over the High Arctic Ocean Derived from AVHRR and its Validation with SHEBA Data, J. Appl. Met., 41, 413–425, 2002.CrossRefGoogle Scholar
  54. 54.
    Xiong, X., D. Lubin, W. Li, and K. Stamnes, A Critical Examination of Satellite Cloud Retrieval from AVHRR in the Arctic Using SHEBA Data, J. Appl. Met., 1195–1209, 2002.Google Scholar
  55. 55.
    Yan, B., and K. Stamnes, Fast yet accurate computation of the complete radiance distribution in the coupled atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 207–223, 2003.Google Scholar
  56. 56.
    Yan, B., K. Stamnes, W. Li, B. Chen, J. J. Stamnes, and S. C. Tsay, Pitfalls in atmospheric correction of ocean color imagery: Howshould aerosol optical properties be computed? Appl. Opt., 41, 412–423, 2002.CrossRefGoogle Scholar
  57. 57.
    Zhao, L. and F. Weng, Retrieval of ice cloud parameters using the advanced microwave sounding unit, J. Appl. Met., 41, 384–395, 2002.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Knut Stamnes
    • 1
  1. 1.Light and Life Laboratory Department of Physics and Engineering PhysicsStevens Institute of Technology HobokenNew JerseyUSA

Personalised recommendations