Atmospheric Observations in the Perspective of Changing Climate and Environment, and the Synergy Between Ground-Based, Airborne and Space-Based Measurements

  • Martine De Mazière
Part of the Lecture Notes in Physics book series (LNP, volume 607)


The detection of atmospheric changes requires long-term observations, from ground and space. The exploitation of the synergy between all types of measurements is essential for getting a full understanding of the complex system of the atmosphere, on the different temporal and spatial scales involved. At present it is demonstrated unambiguously that the Earth atmosphere is changing, and international regulations to counteract these changes have been implemented. The full global picture however is still to be unravelled. This contribution will introduce some remote sensing ground-based observation methods and highlight some aspects of atmospheric changes, but aiming in no way at completeness. A large amount of references is included for guiding the reader to the literature.


Potential Vorticity Stratospheric Ozone Polar Vortex Montreal Protocol Atmospheric Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Anderson, D.W. Toohey, W.H. Brune: Free radicals within the Antarctic Vortex: The role of CFCs in Antarctic Ozone loss, Science, 251, 39–46 (1991).CrossRefGoogle Scholar
  2. 2.
    G. Braathen, M.H. Profitt, and F. Stordal: Polar vortex climatology from the ECMWF ERA-15 data set, Proceedings of the SPARC 2000 2nd General Assembly of the SPARC/WCRP Project (Mar del Plata, Argentina November 6–10, 2000), Subsession 2–5: Data analysis and model studies, (2000).Google Scholar
  3. 3.
    M.P. Chipperfield et al.: On the use of HF as a reference for the comparison of stratospheric observations and models, J. Geophys. Res., 102, 12,901–12,919 (1997).Google Scholar
  4. 4.
    J.S. Daniel, S. Solomon, R.W. Portmann, R.R. Garcia: Stratospheric ozone destruction: the importance of bromine relative to chlorine, J. Geophys. Res., 104, 23,871–23,880 (1999).Google Scholar
  5. 5.
    M. De Mazière, M. Van Roozendael, C. Hermans, P.C. Simon, P. Demoulin, and G. Roland: Quantitative evaluation of the post-Pinatubo NO 2 reduction and recovery, based on 10 years of FTIRand UV-visible spectroscopic measurements at the Jungfraujoch, J. Geophys. Res., 103, 10,849–10,858 (1998).CrossRefGoogle Scholar
  6. 6.
    M. De Mazière, O. Hennen, M. Van Roozendael, P. Demoulin, and H. De Backer: Daily ozone vertical profile model built on geophysical grounds, for column retrieval from atmospheric high resolution infrared spectra, J. Geophys. Res., 104, 23,855–23,869 (1999).CrossRefGoogle Scholar
  7. 7.
    A. Engel and U. Schmidt: An estimate of the trend of the stratospheric chlorine loading based on in-situ balloon observations, SPARC Newsletter n. 13 (July 1999).Google Scholar
  8. 8.
    G. Kockarts: Aéronomie, Physique et chimie de l’atmosphère (De Boeck and Larcier, Bruxelles 2000), chapter 5.Google Scholar
  9. 9.
    H.A. Michelsen, G.L. Manney, M.R. Gunson, R. Zander: Correlations of stratospheric abundances of NO y, O 3, N 2 O, and CH 4 derived from ATMOS measurements, J. Geophys. Res., 103, 28,347–28,359 (1998).CrossRefGoogle Scholar
  10. 10.
    C.D. Nevison, S. Solomon, and J.M. Russell III: Nighttime formation of N 2 O 5 inferred from the Halogen Occultation Experiment sunset/sunrise NO x ratios, J. Geophys. Res., 101, 6,741–6,748 (1996).CrossRefGoogle Scholar
  11. 11.
    R.A. Plumb and M.K.W. Ko: Interrelationships between mixing ratios of longlived stratospheric constituents, J. Geophys. Res., 97, 10,145–10,156 (1992).Google Scholar
  12. 12.
    I. Pundt, J. P. Pommereau, C. Phillips, and E. Lateltin: Upper limit of iodine in the lower stratosphere, J. Atm. Chem., 30, 173–185 (1998).CrossRefGoogle Scholar
  13. 13.
    R.J. Salawitch et al.: The diurnal variation of hydrogen, nitrogen, and chlorine radicals: implications for the heterogeneous production of HNO 2, Geophys. Res. Lett., 21, 2,551–2,554 (1994).Google Scholar
  14. 14.
    D.T. Shindell, D. Rind, and P. Lonergan: Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse gas concentrations, Nature, 392, 589–592 (1998).CrossRefGoogle Scholar
  15. 15.
    S. Solomon, R.R. Garcia, A.R. Ravishankara: On the role of iodine in ozone depletion, J. Geophys. Res., 99, 20,491–20,499 (1994).Google Scholar
  16. 16.
    M. Van Roozendael, M. De Mazière, C. Hermans, P. C. Simon, J.-P. Pommereau, F. Goutail, X.X. Tie, G. Brasseur, C. Granier: Ground-based observations of stratospheric NO 2 at high and midlatitudes in Europe after the Mount Pinatubo, J. Geophys. Res., 102, 19,171–19,176 (1997).CrossRefGoogle Scholar
  17. 17.
    D.W. Waugh et al.: Mixing of polar vortex air into middle latitudes as revealed by tracer-tracer scatterplots, J. Geophys. Res., 102, 13,119–13,134 (1997).Google Scholar
  18. 18.
    R. Zander, E. Mahieu, P. Demoulin, C. Servais, and F. Mélen:Long-term evolution of the loading of CH 4, N 2 O, CO, CCl 2 F 2, CHClF 2, and SF 6 above Central Europe during the last 15 years, in Proceedings of the Second International Symposium on non-CO 2 Greenhouse Gases-Scientific Understanding, Control and Implementation, (Noordwijkerhout, The Netherlands, Sept. 8–10, 1999), Sp. Vol. Environmental Monitoring and Assessment, Kluwer Academic Publishers, pp. 211–216 (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Martine De Mazière
    • 1
  1. 1.Belgisch Instituut voor Ruimte AeronomieBelgium

Personalised recommendations