Skip to main content

Hybrid Simulation Codes: Past, Present and Future—A Tutorial

  • Chapter
  • First Online:
Space Plasma Simulation

Part of the book series: Lecture Notes in Physics ((LNP,volume 615))

Abstract

Hybrid codes, in which the ions are treated kinetically and the electrons are assumed to be a massless fluid, have been widely used in space physics over the past two decades. These codes are used to model phenomena on ion inertial and gyro-radius scales, which fall between longer scales obtained by magnetohydrodynamic simulations and shorter scales attainable by full particle simulations. In this tutorial, the assumptions and equations of the hybrid model are described along with some most commonly used numerical implementations. Modifications to include finite electron mass are also briefly discussed. Examples of results of two-dimensional hybrid simulations are used to illustrate the method, to indicate some of the tradeoffs that need to be addressed in a realistic calculation, and to demonstrate the utility of the technique for problems of contemporary interest. Some speculation about the future direction of space physics research using hybrid codes is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer, P.L., Kilb, R.W., Crevier, W.F. (1971): Thermalization in the Earth’s bow shock. J. Geophys. Res., 76, 2927

    Article  ADS  Google Scholar 

  2. Forslund, D.W., Freidberg, J.P. (1971): Theory of laminar collisionless shocks. Phys. Rev. Lett., 27, 1189

    Article  ADS  Google Scholar 

  3. Mason, R.J. (1971): Computer simulation of ion-acoustic shocks: The diaphragm problem. Phys. Fluids, 14, 1943

    Article  ADS  Google Scholar 

  4. Chodura, R. (1975): A hybrid fluid-particle model of ion heating in high-Machnumber shock waves. Nucl. Fusion, 15, 55

    Article  ADS  Google Scholar 

  5. Sgro, A.G., Nielson, C.W. (1976): Hybrid model studies of ion dynamics and magnetic field diffusion during pinch implosions. Phys. Fluids, 19, 126

    Article  ADS  Google Scholar 

  6. Hamasaki, S., Krall, N.A., Wagner, C.E., Byrne, R.N. (1977): Effects of turbulence on theta pinch modeling by hybrid numerical methods. Phys. Fluids, 20, 65

    Article  ADS  Google Scholar 

  7. Hewett, D.W. (1980): A global method for solving the electron-field equations in a zero-inertial electron hybrid plasma simulation code. J. Comput. Phys., 38, 378

    Article  MATH  ADS  Google Scholar 

  8. Leroy, M.M., Goodrich, C.C., Winske, D., Wu, C.S., Papadopoulos, K. (1981): Simulation of a perpendicular bow shock. Geophys. Res. Lett., 8, 1269

    Article  ADS  Google Scholar 

  9. Winske, D., Leroy, M.M. (1984): Hybrid simulation techniques applied to the Earth’s bow shock. In: Matsumoto, H., Sato, T. (ed) Computer Simulations of Space Plasmas. D. Reidel/Terra Sci., Hingham MA

    Google Scholar 

  10. Winske, D. (1985): Hybrid simulation codes with application to shocks and upstream waves. Space Sci. Rev., 42, 53

    Article  ADS  Google Scholar 

  11. Quest, K.B. (1989): Hybrid simulation. In: Lembege, B., Eastwood, J. W. (ed) Tutorial Courses: Third International School for Space Simulation. Cepadues Ed., Toulouse, France

    Google Scholar 

  12. Winske, D., Omidi, N. (1993): Hybrid codes: Methods and applications. In: Matsumoto, H., Omura, Y. (ed) Computer Space Plasma Physics: Simulations and Software. Terra, Tokyo

    Google Scholar 

  13. Pritchett, P.L. (2002): Particle-in-cell simulations of plasmas. This volume

    Google Scholar 

  14. Bagdonat, T., Motschmann, U. (2001): 3-D hybrid simulation of the solar wind interaction with comets. In: Buechner, J., Dum, C.T., Scholer, M. (ed) Space Plasma Simulation: Proc. Sixth International School/Symposium ISSS-6. Copernicus Gesellschaft, Katlenburg-Lindau, Germany

    Google Scholar 

  15. Lipatov, A.S. (2001): Hybrid codes with finite electron mass. In: Buechner, J., Dum, C.T., Scholer, M. (ed) Space Plasma Simulation: Proc. Sixth International School/Symposium ISSS-6. Copernicus Gesellschaft, Katlenburg-Lindau, Germany

    Google Scholar 

  16. Omidi, N., Karimabadi, H., Quest, K.B. (2001): Global hybrid simulations of solar wind interaction with the magnetosphere. In: Buechner, J., Dum, C.T., Scholer, M. (ed) Space Plasma Simulation: Proc. Sixth International School/Symposium ISSS-6. Copernicus Gesellschaft, Katlenburg-Lindau, Germany

    Google Scholar 

  17. Quest, K.B., Karimabadi, H. (2001): Physics of solar wind magnetosphere interactions: 3-D hybrid simulations. In: Buechner, J., Dum, C.T., Scholer, M. (ed) Space Plasma Simulation: Proc. Sixth International School/Symposium ISSS-6. Copernicus Gesellschaft, Katlenburg-Lindau, Germany

    Google Scholar 

  18. Yin, L., Winske, D., Gary, S.P., Birn, J. (2001): Hybrid and Hall-MHD simulations of collisionless reconnection: Effects of plasma pressure tensor. In: Buechner, J., Dum, C.T., Scholer, M. (ed) Space Plasma Simulation: Proc. Sixth International School/Symposium ISSS-6. Copernicus Gesellschaft, Katlenburg-Lindau, Germany

    Google Scholar 

  19. Winske, D., Omidi, N. (1996): A nonspecialist’s guide to kinetic simulations of space plasmas. J. Geophys. Res., 101, 17287

    Article  ADS  Google Scholar 

  20. Pritchett, P.L. (2000): Particle-in-cell simulations of magnetosphere electrodynamics. IEEE Trans. Plasma Sci., 28, 1976

    Article  ADS  Google Scholar 

  21. Omura, Y., Huba, J.D., Winske, D. (1999): Theory and simulations of nonlinear kinetic processes in space plasmas. In: Stone, W.R. (ed) The Review of Radio Science 1996-1999. Oxford Univ. Press, Oxford

    Google Scholar 

  22. Lipatov, A.S. (2001): The Hybrid Multiscale Simulation Technology. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  23. Vu, H.X., Brackbill, J.U. (1992): CELEST1D: An implicit fully kinetic model for low frequency electromagnetic plasma simulation. Comput. Phys. Comm., 69, 253

    Article  ADS  Google Scholar 

  24. Oppenheim, M., Otani, N., Ronchi, C. (1996): Saturation of the Farley-Buneman instability via nonlinear electron E × B drifts. J. Geophys. Res., 101, 17273

    Article  ADS  Google Scholar 

  25. Mankofsky, A., Sudan, R.N., Denavit, J. (1987): Hybrid simulation of ion beams in background plasma. J. Comput. Phys., 70, 89

    Article  MATH  ADS  Google Scholar 

  26. Omelchenko, Yu.A., Sudan, R.N. (1997): A 3-D Darwin-EM hybrid PICco de for ion ring studies. J. Comput. Phys., 133, 146

    Article  MATH  ADS  Google Scholar 

  27. Vu, H.X. (1998): A massively parallel three-dimensional hybrid code for simulating ion-driven parametric instabilities. J. Comput. Phys., 144, 257

    Article  MATH  ADS  Google Scholar 

  28. Birdsall, C.K., Langdon, A.B. (1985): Plasma Physics Via Computer Simulation. McGraw-Hill, New York

    Google Scholar 

  29. Swift, D.W. (1995): Use of a hybrid code to model the Earth’s magnetosphere. Geophys. Res. Lett., 22, 311

    Article  ADS  Google Scholar 

  30. Byers, J.A., Cohen, B.I., Condit, W.C., Hanson, J.D. (1978): Hybrid simulations of quasi-neutral phenomena in magnetized plasmas. J. Comput. Phys., 27, 363

    Article  ADS  MathSciNet  Google Scholar 

  31. Harned, D.S. (1982): Quasineutral hybrid simulation of macroscopic plasma phenomena. J. Comput. Phys., 47, 452

    Article  MATH  ADS  Google Scholar 

  32. Winske, D., Quest, K.B. (1986): Electromagnetic ion beam instabilities: Comparison of one-and two-dimensional simulations. J. Geophys. Res., 91, 8789

    Article  ADS  Google Scholar 

  33. Brecht, S.H., Thomas, V.A. (1988): Multidimensional simulations using hybrid particle codes. Computer Phys. Comm., 48, 135

    Article  ADS  Google Scholar 

  34. Fujimoto, M. (1991): Instabilities in the magnetopause velocity shear layer. Thesis, U. Tokyo

    Google Scholar 

  35. Thomas, V.A., Winske, D., Omidi, N. (1990): Reforming supercritical quasiparallel shocks: 1. One-and two-dimensional simulations. J. Geophys. Res., 95, 18809

    Article  ADS  Google Scholar 

  36. Winske, D., Quest, K.B. (1988): Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J. Geophys. Res., 93, 9681

    Article  ADS  Google Scholar 

  37. Matthews, A.P. (1994): Current advance method and cyclic leapfrog for 2-D multispecies hybrid plasma simulations. J. Comput. Phys., 112, 102

    Article  MATH  ADS  Google Scholar 

  38. Horowitz, E.J., Shumaker, D.E., Anderson, D.V. (1989): QN3D: A threedimensional quasi-neutral hybrid particle-in-cell code with applications to the tilt instability in field reversed configurations. J. Comput. Phys., 84, 279

    Article  MATH  ADS  Google Scholar 

  39. Terasawa, T., Hoshino, M., Sakai, J.I., Hada, T. (1986): Decay instability of finite amplitude circularly polarized Alfvénwaves: A numerical simulation of stimulated Brillouin scattering. J. Geophys. Res., 91, 4171

    Article  ADS  Google Scholar 

  40. Kazeminezhad, F., Dawson, J.M., Leboeuf, J.N., Sydora, R., Holland, D. (1992): A Vlasov particle ion zero mass electron model for plasma simulations. J. Comput. Phys., 102, 277

    Article  MATH  ADS  Google Scholar 

  41. Hewett, D.W., Nielson, C.W. (1978): A multidimensional quasineutral plasma simulation model. J. Comput. Phys., 29, 219

    Article  MATH  ADS  Google Scholar 

  42. Shay, M., Drake J.F., Denton, R.E., Biskamp, D. (1998): Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res., 103, 9165

    Article  ADS  Google Scholar 

  43. Kuznetsova, M.M., Hesse, M., Winske, D. (1998): Kinetic quasi-viscous and bulk flow inertia effects in collisionless magnetotail reconnection. J. Geophys. Res., 103, 199

    Article  ADS  Google Scholar 

  44. Omidi, N., Winske, D. (1992): Kinetic structure of slow shocks: Effects of the electromagnetic ion/ion cyclotron instability. J. Geophys. Res., 97, 14801

    Article  ADS  Google Scholar 

  45. Winske, D., Omidi, N. (1992): Electromagnetic ion/ion cyclotron instability: Theory and simulations. J. Geophys. Res., 97, 14779

    Article  ADS  Google Scholar 

  46. Cremer, M., Scholer, M. (1999): Collisionless slow shocks in magnetotail reconnection. Geophys. Res. Lett., 26, 2709

    Article  ADS  Google Scholar 

  47. Cremer, M., Scholer, M. (2000): Structure of the reconnection layer and the associated slow shocks: Two-dimensional simulations of a Riemann problem. J. Geophys. Res., 105, 27621

    Article  ADS  Google Scholar 

  48. Daughton, W., Gary, S.P., Winske, D. (1999): Electromagnetic proton/proton instabilities in the solar wind: Simulations. J. Geophys. Res., 104, 4657

    Article  ADS  Google Scholar 

  49. Nakamura, M.S., Fujimoto, M. (1998): A three-dimensional hybrid simulation of magnetic reconnection. Geophys. Res. Lett., 25, 2917

    Article  ADS  Google Scholar 

  50. Krauss-Varban, D., Omidi, N. (1995): Large-scale hybrid simulations of the magnetotail during reconnection. Geophys. Res. Lett., 22, 3271

    Article  ADS  Google Scholar 

  51. Kuznetsova, M.M., Hesse, M., Winske, D. (1996): Ion dynamics in a hybrid simulation of magnetotail reconnection. J. Geophys. Res., 101, 27351

    Article  ADS  Google Scholar 

  52. Nakabayashi, J., Machida, S. (1997): Electromagnetic hybrid code simulation of magnetic reconnection: Velocity distribution functions of accelerated ions. Geophys. Res. Lett., 24, 1339

    Google Scholar 

  53. Nakamura, M.S., Fujimoto, M. (1998): Ion dynamics and resultant velocity space distributions in the course of magnetotail reconnection. J. Geophys. Res., 103, 4531

    Article  ADS  Google Scholar 

  54. Lottermoser, R.F., Scholer, M., Matthews, A.P. (1998): Ion kinetics in magnetic reconnection: Hybrid simulations. J. Geophys. Res., 103, 4547

    Article  ADS  Google Scholar 

  55. Hesse, M., Winske, D. (1993): Hybrid simulations of collisionless ion tearing. Geophys. Res. Lett., 20, 1207

    Article  ADS  Google Scholar 

  56. Hesse, M., Winske, D. (1994): Hybrid simulations of collisionless reconnection in current sheets. J. Geophys. Res., 99, 11177

    Article  ADS  Google Scholar 

  57. Hesse, M., Winske, D., Kuznetsova, M.M. (1995): Hybrid modeling of collisionless reconnection in two-dimensional current sheets: Simulations. J. Geophys. Res., 100, 21815

    Article  ADS  Google Scholar 

  58. Yin, L., Winske, D., Gary, S.P., Birn, J. (2001): Hybrid and Hall-MHD simulations of collisionless reconnection: Dynamics of the electron pressure tensor. J. Geophys. Res., 106, 10761

    Article  ADS  Google Scholar 

  59. Yin, L., Winske, D., Gary, S.P., Birn, J. (2001): Particle Hall-MHD simulation of collisionless reconnection: Finite ion gyro-orbit correction. Geophys. Res. Lett., 28, 2173

    Article  ADS  Google Scholar 

  60. Yin, L., Winske, D., Gary, S.P., Birn, J. (2002): Hybrid and Hallmagnetohydrodynamics simulations of collisionless reconnection: Effect of the ion pressure tensor and particle Hall-magnetohydrodynamics. Phys. Plasmas, 9, 2575–2584

    Article  ADS  Google Scholar 

  61. Brecht, S.H., Ferrante, J.R. (1991): Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars. J. Geophys. Res., 96, 11209

    Article  ADS  Google Scholar 

  62. Brecht, S.H., Ferrante, J.R., Luhmann, J.G. (1993): Three-dimensional simulations of the solar wind interaction with Mars. J. Geophys. Res., 98, 1345

    Article  ADS  Google Scholar 

  63. Brecht, S.H. (1997): Hybrid simulations of the magnetic topology of Mars. J. Geophys. Res., 102, 4743

    Article  ADS  Google Scholar 

  64. Omidi, N., Karimabadi, H., Krauss-Varban, D¿ (1998): Hybrid simulation of the curved dayside magnetopause during southward IMF. Geophys. Res. Lett., 25, 3273

    Article  ADS  Google Scholar 

  65. Ogino, T. (1993): Two-dimensional MHD code. In: Matsumoto, H., Omura, Y. (ed) Computer Space Plasma Physics: Simulations and Software. Terra, Tokyo

    Google Scholar 

  66. Sckopke, N., Paschmann, G., Bame, S.J., Gosling, J.T., Russell, C.T. (1983): Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res., 88, 6121

    Article  ADS  Google Scholar 

  67. Dawson, J.M. (1999): Role of computer modeling of plasmas in the 21st century. Phys. Plasmas, 6, 4436

    Article  ADS  Google Scholar 

  68. Lin, Y., Xie, H. (1997): Formation of reconnection layer at the dayside magnetopause. Geophys. Res. Lett., 24, 3145

    Article  ADS  Google Scholar 

  69. Xie, H., Lin, Y. (2000): Two-dimensional hybrid simulation of the dayside reconnection layer and associated ion transport. J. Geophys. Res., 105, 25171

    Article  ADS  Google Scholar 

  70. Nakamura, M., Scholer, M. (2000): Structure of the magnetopause reconnection layer and of flux transfer events: Ion kinetic effects. J. Geophys. Res., 105, 23179

    Article  ADS  Google Scholar 

  71. Lin, Y., Swift, D.W. (1996): A two-dimensional hybrid simulation of the magnetotail reconnection layer. J. Geophys. Res., 101, 19859

    Article  ADS  Google Scholar 

  72. Scholer, M., Lottermoser, R.F. (1998): On the kinetic structure of the magnetotail reconnection layer. Geophys. Res. Lett., 25, 3281

    Article  ADS  Google Scholar 

  73. Galeev, A.A., Lipatov, A.S., Sagdeev, R.Z. (1987): Two-dimensional numerical simulation of the relaxation of cometary ions and MHD turbulence in the flow of the solar wind around a cometary atmosphere. Sov. J. Plasma Phys., 13, 323

    Google Scholar 

  74. Omidi, N., Winske, D. (1990): Steepening of magnetosonic waves into shocklets: Simulations and consequences for planetary shocks and comets. J. Geophys. Res., 95, 2281

    Article  ADS  Google Scholar 

  75. Liewer, P.C., Velli, M., Goldstein, B. (1999): Hybrid simulations of wave propagation and ion cyclotron heating in the expanding solar wind. Space Sci. Rev., 87, 257

    Article  ADS  Google Scholar 

  76. Miller, R.H., Rasmussen, C.E., Gombosi, T.I., Khazanov, G.V., Winske, D. (1993): Kinetic simulation of plasma flows in the inner magnetosphere. J. Geophys. Res., 98, 19301

    Article  ADS  Google Scholar 

  77. Jones, M.E., Lemons, D.S., Mason, R.J., Thomas, V.A., Winske, D. (1996): A grid-based Coulomb collision model for PIC codes. J. Comput. Phys., 123, 169

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. Thomas, V.A. (1997): Modeling combined collisional/collisionless plasma interpenetration. IEEE Trans. Plasma Sci., 25, 353

    Article  ADS  Google Scholar 

  79. Decyk, V.K., Dauger, D.E. (2001): How to build an AppleSeed: A parallel Macintosh cluster for numerically intensive computing. In: Buechner, J., Dum, C.T., Scholer, M. (ed) Space Plasma Simulation: Proc. Sixth International School/Symposium ISSS-6. Copernicus Gesellschaft, Katlenburg-Lindau, Germany

    Google Scholar 

  80. Liewer, P.C., Decyk, V.K. (1989): A general concurrent algorithm for plasma particle-in-cell simulation codes. J. Comput. Phys., 85, 302

    Article  MATH  ADS  Google Scholar 

  81. Omidi, N., Blanco-Cano, X., Russell, C.T., Karimabadi, H., Acuna, M. (2002): Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. J. Geophys. Res., 107, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winske, D., Yin, L., Omidi, N., Karimabadi, H., Quest, K. (2003). Hybrid Simulation Codes: Past, Present and Future—A Tutorial. In: Büchner, J., Scholer, M., Dum, C.T. (eds) Space Plasma Simulation. Lecture Notes in Physics, vol 615. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36530-3_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36530-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00698-5

  • Online ISBN: 978-3-540-36530-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics