Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 219))

  • 603 Accesses

Abstract

A semiconductor microcavity is an optical resonator, where the mirrors consist of alternating layers of two different semiconductors with different refractive indices, e.g., GaAs and AlAs, which have thicknesses of a quarter wavelength each. The resonator itself is called spacer, and has a thickness of a few half wavelengths. The electric fields of the light waves, and hence the light–matter interaction can be modified significantly inside a microcavity. In the past decades, a number of sophisticated experiments have been reported that took advantage of the strongly enhanced electric field inside the spacer of a planar semiconductor microcavity. A prominent example is the enhanced exciton–photon coupling, resulting in an enlarged Rabi splitting, in planar microcavities containing undoped quantum wells [1]. Subsequently, a wealth of theoretical and experimental work on exciton polaritons in semiconductor microcavities, e.g., about the influence of a magnetic field [2], or coupling between different microcavities [3], followed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa: Phys. Rev. Lett. 69, 3314 (1992)

    Article  CAS  Google Scholar 

  2. J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdre, U. Oesterle, and R. P. Stanley: Phys. Rev. Lett. 74, 3967 (1995)

    Article  CAS  Google Scholar 

  3. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems: Appl. Phys. Lett. 65, 2093 (1994)

    Article  CAS  Google Scholar 

  4. A. Fainstein. B. Jusserand, and V. Thierry-Mieg: Phys. Rev. Lett. 75, 3764 (1995)

    Article  CAS  Google Scholar 

  5. A. Fainstein. B. Jusserand, and V. Thierry-Mieg: Phys. Rev. Lett. 78, 1576 (1997)

    Article  CAS  Google Scholar 

  6. T. Kipp, L. Rolf, C. Schüller, D. Endler, Ch. Heyn, and D. Heitmann: Phys. Rev. B 63, 195304 (2001)

    Article  Google Scholar 

  7. T. Kipp, L. Rolf, C. Schüller, D. Endler, Ch. Heyn, and D. Heitmann: Physica E 13, 408 (2002)

    Article  CAS  Google Scholar 

  8. For an overview see: A. Pinczuk and G. Abstreiter in: Light Scattering in Solids V, Topics in Applied Physics Vol. 66, eds. M. Cardona and G. Güntherodt (Springer, Berlin, 1988) p. 153

    Google Scholar 

  9. F. A. Blum: Phys. Rev. B 1, 1125 (1970)

    Article  Google Scholar 

  10. A. Fainstein, B. Jusserand, and V. Thierry-Mieg: Phys. Rev. B 53, R13287 (1996)

    Article  CAS  Google Scholar 

  11. A. Fainstein and B. Jusserand: Phys. Rev. B 57, 2402 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Schüller, C. (2006). Inelastic Light Scattering in Microcavities. In: Inelastic Light Scattering of Semiconductor Nanostructures. Springer Tracts in Modern Physics, vol 219. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-36526-5_8

Download citation

Publish with us

Policies and ethics