Skip to main content

Crystalline Mid-Infrared Lasers

  • Chapter
  • First Online:
Book cover Solid-State Mid-Infrared Laser Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 89))

Abstract

A survey of the well-established as well as newly emerging ion-doped crystalline lasers, operating in the mid-IR spectral range between 2 and 5 µm, is presented. The review includes rare-earth- and transition-metal-based ionic crystals, as well as color-center lasers. The emphasis is made on state-of-the-art compact all-solid-state room-temperature tunable sources, belonging to the broad class of vibronic lasers. The announcement of the efficient high-power room-temperature operation and super-broad tunability, as well as the possibility of generating ultrashort pulses from the novel class of chromium doped chalcogenide lasers led to a strong revival of research interest in vibronic laser systems, involving 3d n transition-metal ions. The review outlines the underlying physics of mid-IR lasers and sorts out the essential spectroscopic and laser characteristics, allowing assessment of the suitability of laser materials to serve as active media in diode-pumped laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Byer: Diode laser-pumped solid-state lasers, Science 239, 742 (1988)

    Article  ADS  Google Scholar 

  2. T. Y. Fan, R. L. Byer: Diode laser-pumped solid-state lasers, IEEE J. Quantum Electron. 24, 895 (1988)

    Article  ADS  Google Scholar 

  3. A. L. Schawlow, C. H. Townes: Infrared and optical masers, Phys. Rev. 112, 1940–1949 (1958)

    Article  ADS  Google Scholar 

  4. T. H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  5. T.H. Maiman, R. H. Hoskins, I. H. D’Haenens, C.K. Asawa, V. Evtukhov: Spectroscopy and stimulated emission in ruby, Phys. Rev. 123, 1151 (1960)

    Article  ADS  Google Scholar 

  6. P. P. Sorokin, M. J. Stevenson: Stimulated infrared emission from trivalent uranium, Phys. Rev. Lett. 5, 557–559 (1960)

    Article  ADS  Google Scholar 

  7. Z. J. Kiss, R. C. Duncan: Pulsed and continuous optical maser action in CaF2:Dy2+, Proc. IRE (Corresp.) 50, 1531–1532 (1962)

    Google Scholar 

  8. A. Yariv: Continuous operation of a CaF2:Dy2+ optical maser, Proc. IRE (Corresp.) 50, 1699 (1962)

    Google Scholar 

  9. Z. J. Kiss, H. R. Lewis, R. C. Duncan: Sun-pumped continuous optical maser, Appl. Phys. Lett. 2, 93–94 (1963)

    Article  ADS  Google Scholar 

  10. A. A. Kaminskii, L. S. Kornienko, A. M. Prokhorov: Continuous solar laser using Dy2+in CaF2, Dokl. Akad. Nauk SSSR 161, 1063–1064 (1965) [English transl. Sov. Phys. Dokl. 10, 334–335 (1965)]

    Google Scholar 

  11. L. F. Johnson, R. E. Dietz, H. J. Guggenheim: Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons, Phys. Rev. Lett. 11, 318–320 (1963)

    Article  ADS  Google Scholar 

  12. L.F. Johnson, R. E. Dietz, H. J. Guggenheim: Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2, Appl. Phys. Lett. 5, 21–22 (1964)

    Article  ADS  Google Scholar 

  13. L.F. Johnson, H. J. Guggenheim, R.A. Thomas: Phonon terminated optical masers, Phys. Rev. 149, 179–185 (1966)

    Article  ADS  Google Scholar 

  14. L.F. Johnson, H. J. Guggenheim, D.H. Bahnck: Phonon terminated laser emission from Ni2+ ions in KMgF3, Opt. Lett. 8, 371–373 (1983)

    Article  ADS  Google Scholar 

  15. P. F. Moulton, A. Mooradian: Broadly tunable CW operation of Ni:MgF2 and Co:MgF2 lasers, Appl. Phys. Lett. 35, 838–840 (1971)

    Article  ADS  Google Scholar 

  16. P. F. Moulton, A. Mooradian, T.B. Reed: Efficient CW optically pumped Ni:MgF2 laser, Opt. Lett. 3, 164–166 (1978)

    ADS  Google Scholar 

  17. D. Welford, P. F. Moulton: Room-temperature operation of a Co:MgF2 laser, Opt. Lett. 13, 975–977 (1988)

    ADS  Google Scholar 

  18. W. Gellermann: Color center lasers, J. Phys. Chem. Solids 52, 249–297 (1991)

    Article  ADS  Google Scholar 

  19. L.F. Mollenauer, R.H. Stolen: The soliton laser, Opt. Lett. 9, 14 (1984)

    ADS  Google Scholar 

  20. S. B. Mirov, T. Basiev: Progress in color-center lasers, IEEE J. Sel. Top. Quantum Electron. 1, 22–30 (1995)

    Article  Google Scholar 

  21. L.F. Johnson, G. D. Boyd, K. Nassau: Optical maser characteristics of Ho3+ in CaWO4, Proc. IRE 50, 87 (1962)

    Article  Google Scholar 

  22. L.F. Johnson, G.D. Boyd, K. Nassau: Optical maser characteristics of Tm3+ in CaWO4, Proc. IRE 50, 86 (1962)

    Article  Google Scholar 

  23. L. F. Johnson: Optical maser characteristics of rare-earth ions in crystals, J. Appl. Phys. 34, 897–909 (1963)

    Article  ADS  Google Scholar 

  24. Z. J. Kiss, R. C. Duncan: Optical maser action in CaWO4:Er3+, Proc. IRE 50, 1531 (1962)

    Google Scholar 

  25. Yu. K. Voron’ko, A.A. Kaminskii, V. V. Osiko, A.M. Prokhorov: A new type of crystal for optically pumped lasers, Izv. Akad. Nauk SSSR, Neorg. Mater. 2, 1161–1170 (1966) [English transl. Inorg. Mater. (USSR) 991–998 (1966)]

    Google Scholar 

  26. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G.B. Loutts, E.W. Zharikov, A.I. Shcherbakov: Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets, J. Opt. Soc. Am. B 10, 1436–1442 (1993)

    ADS  Google Scholar 

  27. D. E. McCumber: Theory of phonon-terminated optical masers, Phys. Rev. 134, A299–A306 (1964)

    Article  ADS  Google Scholar 

  28. D.E. McCumber: Einstein relations connecting broadband emission and absorption spectra, Phys. Rev. 136, A954–A957 (1964)

    Article  ADS  Google Scholar 

  29. A. A. Kaminskii: Laser Crystals (Springer, 1990) p. 456

    Google Scholar 

  30. W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1999) p. 746

    MATH  Google Scholar 

  31. L.F. Johnson, H. J. Guggenheim: Infrared-pumped visible laser, Appl. Phys. Lett. 19, 44–47 (1971)

    Article  ADS  Google Scholar 

  32. A. A. Mak, B. M. Antipenko: Rare-earth converters of neodymium laser radiation Zh. Prikl. Spektrosk. 37, 1029 (1982) [English transl. J. Appl. Spectr. 37, 1458–71 (1982)]

    ADS  Google Scholar 

  33. B.M. Antipenko, A.A. Mak, B.V. Sinizyn, O.B. Raba, T.V. Uvarova: New excitation schemes for laser transitions, Zh. Tekh. Phys. 52, 1982; p. 521–522 (1982) [English transl. Sov. Phys.-Tech. Phys. 27, 333–334 (1982)]

    Google Scholar 

  34. B. M. Antipenko: Cross-relaxation schemes for pumping laser transitions, Zh. Tekh. Phys. 54, 385–388 (1984) [English transl. Sov. Phys.-Tech. Phys. 29, 228–230 (1984)]

    Google Scholar 

  35. A. A. Kaminskii: Spectroscopic study of stimulated radiation of Er3+ activated CaF2-YF3 crystals, Optika-i-Spektroskopiya 31, 938–943 (1971) [English transl. Opt. Spectrosc. 31, 507–510 (1971)]

    Google Scholar 

  36. L.F. Johnson, L. G. Van Uitert, J. J. Rubin, R. A. Thomas: Energy transfer from Er3+ to Tm3+ and Ho3+ ions in crystals, Phys. Rev. 133, A494–A498 (1964)

    Article  ADS  Google Scholar 

  37. B. Henderson, R. H. Bartram: Crystal-Field Engineering of Solid-State Laser Materials (Cambridge Univ. Press, Cambridge 2000) p. 398

    Google Scholar 

  38. P. F. Moulton: Spectroscopic and laser characteristics of Ti:Al2O3, J. Opt. Soc. Am. B 3, 125–133 (1986)

    ADS  Google Scholar 

  39. J. R. C. Stoneman, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett. 15, 486–488 (1990)

    ADS  Google Scholar 

  40. J. F. Pinto, L. Esterowitz, G.H. Rosenblatt: Tm3+:YLF laser continuously tunable between 2.20 and 2.46 µm, Opt. Lett. 19, 883–885 (1994)

    ADS  Google Scholar 

  41. G. Huber, E. W. Duczynski, K. Petermann: Laser pumping of Ho-, Tm-, Erdoped garnet lasers at room temperature, IEEE J. Quantum Electron. 24, 920–923 (1988)

    Article  ADS  Google Scholar 

  42. T.Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich: Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG, IEEE J. Quantum Electron. 24, 924–933 (1988)

    Article  ADS  Google Scholar 

  43. K. L. Vodop’yanov, L. A. Kulevskii, P. P. Pashinin, A. F. Umyskov, I.A. Shcherbakov: Bandwidth-limited picosecond pulses from a YSGG:Cr3+:Er3+ laser (λ = 2.79 µm) with active mode locking, Kvant.-Elektron. 14, 1219–1224 (1987) [English transl. Sov. J. Quantum Electron. 17, 776–779 (1987)]

    Google Scholar 

  44. E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I. A. Shcherbakov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, in W. R. Bosenberg, M.M. Fejer (Eds.), OSA Trends Opt. Photonics 19, 197–200 (Opt. Soc. Am., Washington, DC 1998)

    Google Scholar 

  45. R.H. Page, L.D. DeLoach, G.D. Wilke, S.A. Payne, R. J. Beach, W.F. Krupke: Cr2+-doped II-VI crystals: new widely tunable, room-temperature mid-IR lasers, Lasers and Electro-Optics Society Annual Meeting, 1995, 8th Annual Meeting Conference Proceedings, Vol. 1, IEEE 449–450 (1995)

    Article  Google Scholar 

  46. L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.P. Krupke: Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron. 32, 885–895 (1996)

    Article  ADS  Google Scholar 

  47. R.H. Page, K.I. Schaffers, L.D. DeLoach, G.D. Wilke, F.D. Patel, J.B. Tassano, S.A. Payne, W.F. Krupke, K.-T. Chen, A. Burger: Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers, IEEE J. Quantum Electron. 33, 609–619 (1997)

    Article  ADS  Google Scholar 

  48. G.J. Wagner, T. J. Carrig, R.H. Page, K.I. Schaffers, J. Ndap, X. Ma, A. Burger: Continuous-wave broadly tunable Cr2+:ZnSe laser, Opt. Lett. 24, 19–21 (1999)

    Article  ADS  Google Scholar 

  49. S. Kück: Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers, Appl. Phys. B. 72, 515–562 (2001)

    ADS  Google Scholar 

  50. B. F. Aull, H. P. Jenssen: Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. I. A phenomenological crystal-field model, Phys. Rev. B 34, 6640–6646 (1986)

    Article  ADS  Google Scholar 

  51. B. F. Aull, H. P. Jenssen: Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections, IEEE J. Quantum Electron. 18, 925–930 (1982)

    Article  ADS  Google Scholar 

  52. E.V. Zharikov, A.I. Zagumennyi, G.B. Lutts, V.A. Smirnov, I.T. Sorokina, I.A. Shcherbakov: New laser crystals —solid solutions based on scandium-containing aluminum-gallium garnets, doped with chromium and neodymium, Laser Phys. 1, 216–219 (1991)

    Google Scholar 

  53. M. J. Weber: Handbook of Lasers (CRC, Boca Raton, FL 2000) p. 1198

    Google Scholar 

  54. S. Hufner: Optical Spectra of Transparent Rare-Earth Compounds (Academic Press, New York 1978)

    Google Scholar 

  55. B. Henderson, G. F. Imbusch: Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford 1989)

    Google Scholar 

  56. G.H. Dieke: Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley-Interscience, New York 1968)

    Google Scholar 

  57. B.R. Judd: Optical absorption intensities of rare-earth ions, Phys. Rev. 127, 750–761 (1962)

    Article  ADS  Google Scholar 

  58. B. G. Wybourne: Spectroscopic Properties of Rare-Earths (Wiley-Interscience, New York 1965)

    Google Scholar 

  59. G.D. Boyd, R.J. Collins, S. P.S. Porto, A. Yariv, W.A. Hargreaves: Excitation, relaxation and continuous maser action in the 2.613-micron transition of CaF2:U3+, Phys. Rev. Lett. 8, 269–272 (1962)

    Article  ADS  Google Scholar 

  60. S. P. S. Porto, A. Yariv: Optical maser characteristics of BaF2:U3+, Proc. IRE 50, 1542–1543 (1962)

    Google Scholar 

  61. S.P. S. Porto, A. Yariv: Excitation, relaxation and optical maser action at 2.407 micron in SrF2:U3+, Proc. IRE 50, 1543–1544 (1962)

    Google Scholar 

  62. D. Meichenin, F. Auzel, S. Hubert, E. Simoni, M. Louis, J.Y. Gesland: New room-temperature CW laser at 2.82 µm U3+/LiYF4, Electron. Lett. 30, 1309 (1994)

    Article  ADS  Google Scholar 

  63. H. P. Jenssen, M. A. Noginov, A. Cassanho: U:YLF, a prospective 2.8 µm laser crystal, OSA Proc. Adv. Solid-State Lasers 15, 463–467 (Opt. Soc. Am., Washington, DC 1993)

    Google Scholar 

  64. G. Menzer: Die Kristallstruktur von Granat, Centralbl. Min. A, 344–345 (1925); Z. Kristallogr. 63, 157–158 (1926) (in German)

    Google Scholar 

  65. G. Menzer: Die Kristallstruktur der Granate, Z. Kristallogr. 69, 300–396 (1928) (in German)

    Google Scholar 

  66. S. Geller: Crystal chemistry of the garnets, Z. Kristallogr. 125, 1–47 (1967)

    Article  Google Scholar 

  67. S. C. Abrahams, S. Geller: Refinement of the structure of a grossularite garnet, Acta Crystallogr. 11, 437–441 (1958)

    Article  Google Scholar 

  68. W. Nie, Y. Kalisky, C. Pedrini, A. Monteil, G. Boulon: Energy transfer from Cr3+ multisites to Tm3+ multisites in yttrium aluminum garnet, Opt. Quantum Electron. 22, 123–131

    Google Scholar 

  69. Y. Kalisky, S. R. Rotman, A. Brenier, C. Pedrini, G. Boulon, F. X. Hartman: Spectroscopic properties, multisite dynamics, and operation of pulsed Ho laser, OSA Proc. Adv. Solid-State Lasers 13, 144–147 (Opt. Soc. Am., Washington, DC 1992)

    Google Scholar 

  70. V. Lupei: RE3+ emission in garnets: multisites, energy transfer and quantum efficiency, Opt. Mater. 19, 95–107 (2002)

    Article  ADS  Google Scholar 

  71. H. Bethe: Thermaufspaltung in Kristallen, Ann. Phys. (Leipzig) 3, 133–208 (1929)

    ADS  Google Scholar 

  72. J. H. Van Vleck: The puzzle of rare-earth spectra in solids, J. Phys. Chem. 41, 67–80 (1937)

    Article  Google Scholar 

  73. J. H. Van Vleck, A. Sherman: The quantum theory of valence, Rev. Mod. Phys. 7, 167–228 (1935)

    Article  MATH  ADS  Google Scholar 

  74. C. J. Ballhausen: Introduction to Ligand Field Theory (McGraw-Hill, New York 1962)

    MATH  Google Scholar 

  75. P. Schuster: Ligandenfeldtheorie (Verlag Chemie, Weinheim 1973)

    Google Scholar 

  76. Y. Tanabe, S. Sugano: On the absorption spectra of complex ions, Part I, J. Phys. Soc. Jap. 9, 753–766 (1954); Part II, J. Phys. Soc. Jap. 9, 766–779 (1954)

    ADS  Google Scholar 

  77. S. Sugano, Y. Tanabe, H. Kamimura: Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York 1970)

    Google Scholar 

  78. H. A. Jahn, E. Teller: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. R. Soc. London A 161, 220–235 (1937)

    MATH  ADS  Google Scholar 

  79. R. Engleman: The Jahn-Teller Effect in Molecules and Crystals (Wiley-Interscience, New York 1972)

    Google Scholar 

  80. I. B. Bersuker: The Jahn-Teller Effect and Vibronic Interactions in Quantum Chemistry (Plenum, New York 1984)

    Google Scholar 

  81. M. Kaminska, J.M. Baranovski, S.M. Uba, J. T. Vallin: Absorption and luminescence of Cr2+(d4) in II-VI compounds, J. Phys. C 12, 2197–2214 (1979)

    Article  ADS  Google Scholar 

  82. J. T. Vallin, G. A. Slack, S. Roberts, A. E. Hughes: Infrared absorption in some II-VI compounds doped with Cr, Phys. Rev. B 2, 4313–4333 (1970)

    Article  ADS  Google Scholar 

  83. S.W. Biernacki, Jahn-Teller coupling of Cr2+ ion in ZnS, ZnSe and ZnTe, Phys. Stat. Sol. (b) 87, 607–612 (1978)

    Article  ADS  Google Scholar 

  84. A. L. Natadze, A. I. Ryskin, Jahn-Teller coupling of Cr2+ ion with degenerate modes in ZnS, ZnSe, and ZnTe crystals: microscopic treatment, Phys. Stat. Sol. (b) 97, 175–185 (1980)

    Article  ADS  Google Scholar 

  85. G. Goetz, H. Zimmermann, H. J. Schulz, Jahn-Teller interaction at Cr2+(d4) centres in tetrahedrally coordinateqd II-VI lattices studied by optical spectroscopy, Z. Physik B 91, 429–436 (1993)

    Article  ADS  Google Scholar 

  86. F. S. Ham: Dynamical Jahn-Teller effect in paramagnetic resonance spectra: Orbital reduction factors and partial quenching of spin-orbit interaction, Phys. Rev. 138, A1727 (1965)

    Article  ADS  Google Scholar 

  87. F. S. Ham: Effect of linear Jahn-Teller coupling on paramagnetic resonance in a 2E state, Phys. Rev. 166, 307 (1968)

    Article  ADS  Google Scholar 

  88. M. D. Sturge: in Advances in research and applications, Vol. 20, Solid State Physics, F. Seitz, D. Turnbull, H. Ehrenreich (Eds.): (Academic Press, New York 1967) p. 91

    Google Scholar 

  89. B. Nygren, J. T. Vallin, G. A. Slack: Direct observation of the Jahn-Teller splitting in ZnSe:Cr2+, Solid State Commun. 11, 35 (1972)

    Article  ADS  Google Scholar 

  90. O. Laporte: Die Struktur des Eisenspektrums, Z. Phys. 23, 135 (1924)

    Article  ADS  Google Scholar 

  91. S.A. Payne, L.L. Chase, H.W. Newkirk, L.K. Smith, W.F. Krupke: LiCaAlF6:Cr3+: A promising new solid-state laser material, IEEE J. Quantum Electron. 24, 2243–2252 (1988)

    Article  ADS  Google Scholar 

  92. L. E. Orgel: An Introduction to Transition-Metal Chemistry Ligand-Field Theory (Methuen, London 1966)

    Google Scholar 

  93. A. Zunger, U. Lindefelt: Electronic structure of transition-atom impurities in semiconductors: Substitutional 3d impurities in silicon, Phys. Rev. B 27, 1191 (1983)

    Article  ADS  Google Scholar 

  94. V. Singh, A. Zunger: Electronic structure of transition-atom impurities in GaP, Phys. Rev. B 31, 3729 (1985)

    Article  ADS  Google Scholar 

  95. I. T. Sorokina, S. Naumov, E. Sorokin, A. G. Okhrimchuk: The mechanisms of slow bleaching in YAG:Cr4+ under CW pumping, in Laser Optics 2000, V.I. Ustyugov (Ed.), Proc. SPIE 4350, 99–105 (2001)

    Google Scholar 

  96. I.T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, A.V. Shestakov: Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser, Opt. Lett. 24, 1578–1580 (1999)

    Article  ADS  Google Scholar 

  97. E. Sorokin, I. T. Sorokina: Tunable diode-pumped continuous-wave Cr2+:ZnSe laser, Appl. Phys. Lett. 80, 3289–3291 (2002)

    Article  ADS  Google Scholar 

  98. I.T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, K. Schaffers: Broadly tunable compact continuous-wave Cr2+:ZnS laser, Opt. Lett. 27, 140–142 (2002)

    Article  Google Scholar 

  99. H. V. Lauer, F. K. Fong: Coupling strength in the theory of radiationless transitions: f to f and d to f relaxation of rare earth ions in YAlO3 and Y3Al5O12, J. Chem. Phys. 60, 274–280 (1974)

    Article  ADS  Google Scholar 

  100. W. H. Fonger, C.W. Struck: Unified model of energy transfer for arbitrary Franck-Condon offset and temperature, J. Lumin. 17, 241–261 (1978)

    Article  Google Scholar 

  101. M. Yamaga, Y. Gao, F. Rasheed, K.P. O’Donnel, B. Henderson, B. Cockayne: Radiative and non-radiative decays from the excited state of Ti3+ ions in oxide crystals, Appl. Phys. B 51, 329 (1990)

    Article  ADS  Google Scholar 

  102. T. T. Basiev, A. Yu. Dergachev, E. O. Kirpichenkova, Yu. V. Orlovskii, V. V. Osiko: Direct measurement of the rate of nonradiative relaxation and luminescence spectra from the 4G7/2, 4G 5/2 + 2G7/2, and 4F9/2 levels of Nd 3+ ions in LaF3, SrF2, and YAlO3 laser crystals, Sov. J. Quantum Electron. 17, 1289–1291 (1987)

    Article  ADS  Google Scholar 

  103. Yu. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, K.K. Pukhov: Multiple-phonon nonradiative relaxation: Experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model, Phys. Rev. B 49, 3821–3830 (1994)

    Article  ADS  Google Scholar 

  104. Yu. V. Orlovskii, K. K. Pukhov, T. T. Basiev, T. Tsuboi: Nonlinear mechanism of multiphonon relaxation of the energy of electronic excitation in optical crystals doped with rare-earth ions, Opt. Mat. 4, 583–595 (1995)

    Article  Google Scholar 

  105. T. T. Basiev, Yu. V. Orlovskii, K.K. Pukhov, V.B. Sigachev, M. E. Doroshenko, I. N. Vorob’ev: Multiphonon relaxation rate measurements and theoretical calculations in the frame of non-linear and non-Coulomb model of a rare-earth ion-ligand interaction, J. Lumin. 68, 241–253 (1996)

    Article  Google Scholar 

  106. T. T. Basiev, Yu. V. Orlovskii, K. K. Pukhov, F. Auzel: Multiphonon relaxation of the energy of electronic excitation in optical crystals doped with rare-earth ions, Laser Phys. 7, 1139–1152 (1997)

    Google Scholar 

  107. Yu. V. Orlovskii, T. T. Basiev, I. N. Vorob’ev, E. O. Orlovskaya, N. P. Barnes, S.B. Mirov: Temperature dependencies of excited state lifetimes and relaxation rates of 3-5 phonon (4-6 µm) transitions in the YAG, LuAG and YLF crystals doped with trivalent holmium, thulium, and erbium, Opt. Mater. 18, 355–365 (2002)

    Article  ADS  Google Scholar 

  108. T. T. Basiev, Yu. V. Orlovskii, B. I. Galagan, M. E. Doroshenko, I. N. Vorob’ev, L. N. Dmitruk, A. G. Papashvili, V. N. Skvortsov, V. A. Konyushkin, K.K. Pukhov, G. A. Ermakov, V.V. Osiko, A.M. Prokhorov, S. Smith: Evaluation of rare-earth doped crystals and glasses for 4-5-µm lasing, Laser Phys. 12, 859–877 (2002)

    Google Scholar 

  109. F. Pelle, F. Auzel: Phonon bottleneck effect in multiphonon non-radiative transitions of rare-earth ions, J. Lumin. 76-77, 623–627 (1998)

    Article  Google Scholar 

  110. F. Pelle, N. Gardant, F. Auzel: Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions, J. Opt. Soc. Am. B 15, 667–679 (1998)

    Article  ADS  Google Scholar 

  111. F. Pelle, N. Gardant, F. Auzel: Saturation effect on multiphonon relaxation rates, J. Alloys Compounds 275/277, 430 (1998)

    Article  Google Scholar 

  112. A. Einstein: Zur Quantentheorie der Strahlung, Phys. Z. 18, 121–128 (1917)

    Google Scholar 

  113. O. Svelto: Principles of Lasers (Plenum, New York 1998)

    Google Scholar 

  114. A.E. Siegman: Lasers (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  115. J. Koetke, G. Huber: Infrared excited-state absorption and stimulatedemission cross sections of Er3+-doped crystals, Appl. Phys. B 61, 151 (1995)

    Article  ADS  Google Scholar 

  116. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen: In situ measurement of ESA, upconversion, and thermal quenching in Cr:LiSAF and Cr:LiSGaF lasers, in OSA Trends Opt. Photonics 10, 411–414, C. R. Pollock, W. R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997)

    Google Scholar 

  117. S. Naoumov, I. T. Sorokina, E. Sorokin: Measurement of the excited state absorption cross-section in Cr4+:YAG using relaxation oscillation study, paper CtuK38, Conference on Lasers and Electro-Optics Europe, Nice, France; in CLEO Europe’2000 Tech. Digest (2000) p. 105

    Google Scholar 

  118. V.V. Ovsyankin, P.P. Feofilov: On the mechanism of adding of electronic excitations in doped crystals, Sov. Phys. JETP Lett. 3, 322–323 (1966)

    ADS  Google Scholar 

  119. V.V. Ovsyankin, P.P. Feofilov: Cooperative sensitization of luminescence in crystals activated with rare earth ions, Sov. Phys. JETP Lett. 4, 317–318 (1966)

    ADS  Google Scholar 

  120. F. Auzel: Compteur quantique par transfert d’energie entre deux ions de terres reres dans un tungstate mixte et dans un verre, C. R. Acad. Sci. Paris B 262, 1016–1019 (1966)

    Google Scholar 

  121. F. Auzel: Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germanate, C. R. Acad. Sci. Paris B 263, 819–821 (1966)

    Google Scholar 

  122. V.V. Ovsyankin, P.P. Feofilov: Cooperative processes in luminescent systems (in Russian), Izv. Akad. Nauk, Ser. Fiz. 37, 262–272 (1973) [English transl. Bulletin Acad. Sci. USSR, Phys. Ser.]

    Google Scholar 

  123. D.L. Dexter: Possibility of luminescence quantum yields greater than unity, Phys. Rev. 108, 630–633 (1957)

    Article  ADS  Google Scholar 

  124. N. Bloembergen: Solid-state infrared quantum counter, Phys. Rev. Lett. 2, 84–85 (1959)

    Article  ADS  Google Scholar 

  125. John F. Porter, Jr.: Fluorescence excitation by the absorption of two consecutive photons, Phys. Rev. Lett. 7, 414–415 (1961)

    Article  ADS  Google Scholar 

  126. J. S. Chivian, W.E. Case, D.D. Eden: The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters, Appl. Phys. Lett. 35, 124–125 (1979)

    Article  ADS  Google Scholar 

  127. V. A. Benderskiy, V. Kh. Brikensteyn, M. A. Kozhushner, I. A. Kuznetsova, P. G. Filippov: Nonlinear fluorescence quenching of high density localized electron excitations in molecular crystals, Sov. Phys. JETP 43, 268 (1976)

    ADS  Google Scholar 

  128. M. A. Noginov, H. P. Jenssen, A. Cassanho: Upconversion in Cr:LiSGaF and Cr:LiSAF, OSA Proc. Adv. Solid-State Lasers 15, 376–380, A. A. Pinto: Tso Ye Fan (Eds.) (Opt. Soc. Am., Washington, DC 1993)

    Google Scholar 

  129. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, M. A. Noginov: in Concentration Quenching and Upconversion of Neodymium Ions in LaSc3(BO3)4 and GdVO4 Crystals, OSA Proc. Adv. Solid-State Lasers 24, 509–513, B.H.T. Chai, S.A. Payne (Eds.) (Opt. Soc. Am., Washington, DC 1995)

    Google Scholar 

  130. D.A. Zubenko, M.A. Noginov, V.A. Smirnov, I.A. Scherbakov: Different mechanisms of nonlinear quenching of luminescence, Phys. Rev. B 55, 8881–8886 (1997)

    Article  ADS  Google Scholar 

  131. B.M. Antipenko, B.A. Buchenkov, A. S. Glebov, T.I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi: Spectroscopy of YAG:CrTmHo laser crystals, Opt. Spectrosc. 64, 772–774 (1988)

    ADS  Google Scholar 

  132. B.M. Antipenko, A. S. Glebov, T.I. Kiseleva, V.A. Pismennyi: Interpretation of the temperature dependence of the YAG:Cr+Tm+Ho lasing threshold, Opt. Spectrosc. 63, 230–232 (1988)

    ADS  Google Scholar 

  133. Kh. S. Bagdasarov, V.I. Zhekov, V.A. Lobachev, T.M. Murina, A.M. Prokhorov: Steady-state emission from a Y3Al5O12:Er3+ laser (λ = 2.94µ, T = 300K), Sov. J. Quantum Electron. 13, 262–263 (1983)

    Article  ADS  Google Scholar 

  134. M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov: Non-linear population processes of Er3+ laser levels in chromium-doped garnet crystals, Opt. Quantum Electron. 22, S61–S74 (1990)

    Article  Google Scholar 

  135. S.A. Pollack, D.B. Chang, N.L. Moise: Continuous wave and Q-switched infrared erbium laser, Appl. Phys. Lett. 49, 1578–1580 (1986)

    Article  ADS  Google Scholar 

  136. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov: Interaction of excited holmium and thulium ions in yttrium scandium garnet crystals, J. Appl. Spectrosc. 52, 391–394 (1990)

    Article  ADS  Google Scholar 

  137. D.A. Zubenko, M.A. Noginov, S.G. Semenkov, V.A. Smirnov, I.A. Shcherbakov: Interionic interactions in YSGG:Cr:Tm and YSGG:Cr:Tm:Ho laser crystals, Sov. J. Quantum Electron. 22, 133–138 (1992)

    Article  ADS  Google Scholar 

  138. D. A. Zubenko, M. A. Noginov, V. G. Ostroumov, V. A. Smirnov, I. A. Shcherbakov: Interaction of excited Cr3+ ions in laser crystals, J. Appl. Spectrosc. 56, 56–59 (1992)

    Article  ADS  Google Scholar 

  139. P. P. Feofilov: in Physics of Impurity Centers in Crystals T. S. Zavt (Ed.) (Academy of Sciences of the Estonian SSR, Tallin 1972), p. 539

    Google Scholar 

  140. W. Lenth, R. M. Macfarlane: Upconversion lasers, Opt. Photonics News, 8–15 (March 1992)

    Google Scholar 

  141. B. DiBartolo (Ed.): Optical Properties of Ions in Solids (Plenum, New York 1975)

    Google Scholar 

  142. M. D. Agranovich, M. D. Galanin: Electron Excitation Energy Transfer in Condensed Media, (Nauka, Moscow 1978) p. 383

    Google Scholar 

  143. B. DiBartolo (Ed.): Energy Transfer Processes in Condensed Matter (Plenum, New York 1983)

    Google Scholar 

  144. A.A. Kaplyanski, R.M. MacFarlane (Eds.): Spectroscopy of Rare-Earth Ions in Crystals (North-Holland, Amsterdam 1987)

    Google Scholar 

  145. A. I. Burstein: Concentration quenching of noncoherent excitations in solids, Sov. Phys. Usp. 27, 579–606 (1984)

    Article  ADS  Google Scholar 

  146. T. Förster: Zwischenmolekulare Energiewanderung und Fluoreszenz, An. Phys. 2, 55–77 (1948)

    Article  MATH  Google Scholar 

  147. Th. Förster: Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie, Z. Naturforsch. 4, 321–327 (1949)

    ADS  Google Scholar 

  148. H. Kallman, F. London: Über quantenmechanische Energieübertragung zwischen atomaren Systemen, Z. Phys. Chem. 2, 207–243 (1929)

    Google Scholar 

  149. D. L. Dexter: A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 835–850 (1953)

    Article  ADS  Google Scholar 

  150. M. Inokuti, F. Hirayama: Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys. 43, 1978–1989 (1965)

    Article  ADS  Google Scholar 

  151. M. D. Galanin: Resonant energy transfer of excitation in solutions, Trudy FIAN 12, 3–35 (1960) (in Russian)

    Google Scholar 

  152. A. S. Agabekyan: Energy transfer in strong incoherent interactions, J. App. Spectrosc. 34, 465–468 (1981)

    Article  Google Scholar 

  153. A. I. Burstein: Hopping mechanism of energy transfer, Soviet Phys. JETP 35, 882–885 (1972)

    ADS  Google Scholar 

  154. A. Brenier, J. Rubin, R. Moncorge, C. Pedrini: Excited-state dynamics of the Tm3+ ions and Tm3+ to Ho3+ energy transfers in LiYF4, J. Phys. (Paris) 50, 1463–1482 (1989)

    Google Scholar 

  155. V. K. S. Shante, S. Kirkpatrick: An introduction to percolation theory, Adv. Phys. 20, 325–357 (1971)

    Article  ADS  Google Scholar 

  156. E. A. Milne: The diffusion of imprisoned radiation through a gas, J. London Math. Soc. 1, 40 (1926)

    Article  Google Scholar 

  157. A.C.G. Mitchell, M.W. Zemansky: Resonance Radiation and Excited Atoms (Cambridge Univ. Press, Cambridge 1961)

    MATH  Google Scholar 

  158. F. Varsanyi, D. l. Wood, A. L. Schawlow: Self-absorption and trapping of sharp-line resonance radiation in ruby, Phys. Rev. Lett. 3, 544–545 (1959)

    Article  ADS  Google Scholar 

  159. T. T. Basiev, Yu. K. Voron’ko, V.V. Osiko, A.M. Prokhorov, I.A. Shcherbakov: Experimental observation of ‘excitation trapping’ in a system of strongly interacting particles, Zhur. Eksp. Teoretich. Fiz. 39, 1042 (1974) [English transl. Sov. Phys. JETP]

    Google Scholar 

  160. P. Lacovara, H.K. Choi, C. A. Wang, R.L. Aggarwal, T.Y. Fan: Room-temperature diode-pumped Yb:YAG laser, Opt. Lett. 16, 1089 (1991)

    ADS  Google Scholar 

  161. D. S. Sumida, T.Y. Fan: Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media, Opt. Lett. 19, 1343–1345 (1994)

    Article  ADS  Google Scholar 

  162. S.A. Payne, one of the authors of the original publication [46], shared this view

    Google Scholar 

  163. M. P. Hehlen: Reabsorption artifacts in measured excited-state lifetimes of solids, J. Opt. Soc. Am. B 14, 1312–1318 (1997)

    Article  ADS  Google Scholar 

  164. M. A. Noginov: Reabsorption trapping of luminescence in laser crystals, enhancement of energy storage and upconversion, Appl. Opt. 36, 4153–4158 (1997)

    Article  ADS  Google Scholar 

  165. I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Efficient broadly tunable continuous-wave Cr2+:ZnSe laser, J. Opt. Soc. Am. B 18, pp. 926–930 (2001)

    Article  ADS  Google Scholar 

  166. J. A. Caird, S.A. Payne, P. R. Staver, A. J. Ramponi, L.L. Chase, W. F. Krupke: Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser, IEEE J. Quantum Electron. 24, 1077–1099 (1988)

    Article  ADS  Google Scholar 

  167. D. Findlay, R. A. Clay: The measurement of internal losses in 4-level lasers, Phys. Lett. 20, 277 (1966)

    Article  ADS  Google Scholar 

  168. V. A. Smirnov, I. A. Shcherbakov: Rare-earth scandium chromium garnets as active media for solid-state lasers, IEEE J. Quantum Electron. 24, 949–959 (1988)

    Article  ADS  Google Scholar 

  169. I. A. Shcherbakov: Optically dense active media for solid-state lasers, IEEE J. Quantum Electron. 24, 979–984 (1988)

    Article  ADS  Google Scholar 

  170. L. F. Johnson, H. J. Guggenheim: New laser lines in the visible from Er3+ ions in BaY2F8, Appl. Phys. Lett. 20, 474–477 (1972)

    Article  ADS  Google Scholar 

  171. B.M. Antipenko: A cooperative mechanism of excitation of Ho3+ lasing ions in BaYb2F8, Soviet Tech. Phys. Lett. 6, 417–418 (1980) [transl. from: Pis’ma v Zhurnal Tekhnicheskoi Fiz. 6, 968–72 (1980)]

    Google Scholar 

  172. L. Esterowitz: Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 µm operating CW at room temperature, Opt. Engin. 29, 676–680 (1990)

    Article  ADS  Google Scholar 

  173. V.I. Zhekov, B.V. Zubov, V.A. Lobachev, T.M. Murina, A.M. Prokhorov, A. F. Shevel: Mechanism of a population inversion between the 4I11/2 and 4I13/2 levels of the Er3+ion in Y3Al5O12 crystals, Soviet J. Quantum Electron. 10 (4), 428-30 (1980) [transl. from: Kvant. Elektron. 7(4), 749–53 (1980)]

    Google Scholar 

  174. V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov: Cooperative phenomena in yttrium erbium aluminium garnet crystals, Soviet J. Quantum Electron. 11(1), 128–130 (1984) [transl. from: Kvant. Elektron. 14(1), 189–92 (1984)]

    Article  ADS  Google Scholar 

  175. V.I. Zhekov, T.M. Murina, A.M. Prokhorov, M.I. Studenikin, S. Georgescu, V. Lupei, I. Ursu: Cooperative process in Y3Al5O12:Er3+ crystals, Soviet J. Quantum Electron. 16(2), 274–276 (1986) [transl. from: Kvant. Elektron 13(2), 419–422 (1986)]

    Article  ADS  Google Scholar 

  176. V.I. Zhekov, V.A. Lobachev, T.M. Murina, A.M. Prokhorov: Spectrum of stimulated emission due to self-saturating transitions in high-concentration media, Soviet J. Quantum Electron. 11(2), 279–281 (1981); [transl. from: Kvant. Elektron. 8(2), 451–454 (1981)]

    Article  ADS  Google Scholar 

  177. M. A. Noginov, H. P. Jenssen: Reabsorption trapping: enhancement of energy storage and upconversion, in Digest IEEE Lasers Electro-Optics Society 1992 Annual Meeting (Institute Electrical Electronics Engineers, New York 1992), postdeadline paper PD9

    Google Scholar 

  178. E.V. Zharikov, N.N. Il’ichev, S.P. Kalitin, V.V. Laptev, A.A. Malyutin, V.V. Osiko, P.P. Pashinin, A.M. Prokhorov, Z. S. Saidov, V.A. Smirnov, A. F. Umyskov, I. A. Shcherbakov: Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium, Sov. J. Quantum Electron. 16(5), 635–639 (1986) [transl. from: Kvant. Elektron. 13(5), 973–979 (1986)]

    Article  ADS  Google Scholar 

  179. Yu. K. Voronrsko, S.B. Gessen, I.V. Gribkov, A. A. Kiryukhin, S.V. Lavrishev, D.I. Melikhov, V.V. Osiko, A.A. Sobolrs, V.M. Tatarintsev, S.N. Ushakov, L. I. Tsymbal: Laser utilizing erbium-activated gadolinium aluminum scandium garnet crystals coactivated with Cr3+ and emitting in the three-micron wavelength region, Sov. J. Quantum Electron. 19(9), 1147–1148 (1989) [transl. from: Kvant. Elektron. 16(9), 1785–1786 (1989)]

    Article  ADS  Google Scholar 

  180. A. A. Kaminskii, T. I. Butaeva, A. O. Ivanov, I. V. Mochalov, A. G. Petrosyan, G. I. Rogov, V. A. Fedorov: New data for stimulated radiation of crystals with Er3+ and Ho3+ ions, Pisrsma Zhur. Techn. Fiz. 2, 787–793 (1976) [English transl. in: Sov. Tech. Phys. Lett. 2, 308 (1976)]

    ADS  Google Scholar 

  181. S. A. Pollack, D. B. Chang, N. L. Moise: Upconversion-pumped infrared erbium laser, J. Appl. Phys. 60, 4077–4086 (1986)

    Article  ADS  Google Scholar 

  182. S.A. Pollack, D.B. Chang: Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals, J. Appl. Phys. 64, 2885–2893 (1988)

    Article  ADS  Google Scholar 

  183. A.A. Kaminskii, B.P. Sobolev, S.E. Sarkisov, V.A. Fedorov, V.V. Ryabchenkov, T. V. Uvarova: A new self-activated crystal for producing three-micron stimulated emission, Inorg. Mater. (USSR) 17, 829–830 (1981) [Transl. from: Izv. Akad. Nauk SSSR, Neorganich. Mater. 17, 1121–1122 (1981)]

    Google Scholar 

  184. M. J. Weber: Handbook of Lasers (CRC Press, Boca Raton, FL 2000)

    Google Scholar 

  185. B. M. Antipenko, A. A. Mak, L. K. Sukhareva: Cross-relaxation BaEr2F8:Tm,Ho laser, Soviet Technical Physics Letters 10(5), 217–218 (1984) [transl. from: Pis’ma Zhur. Tekhnich. Fiz. 10, 513–517 (1984)]

    Google Scholar 

  186. L. F. Johnson, J. E. Geusic, L. G. Van Uitert: Coherent oscillations from Tm3+, Ho3+, Yb3+, Er3+ ions in YAG, Appl. Phys. Lett. 7, 127–128 (1965)

    Article  ADS  Google Scholar 

  187. L. G. VanUitert, E. F. Dearborn, J. J. Rubin: J. Chem. Phys. 46, 3551 (1967)

    Article  ADS  Google Scholar 

  188. B.M. Antipenko, A. S. Glebov, R.V. Dumbravyanu, B.P. Sobolev, T. V. Uvarova: Spectroscopy and lasing characteristics of BaEr2F8:Tm,Ho crystals, Sov. J. Quantum Electron. 17(4), 424–427 (1987) [transl. from: Kvant. Elektron. 14(4), 677–681 (1987)]

    Article  ADS  Google Scholar 

  189. B. M. Walsh, K. E. Muray, N. P. Barnes: Cr:Er:Tm:Ho:yttrium aluminum garnet laser exhibiting dual wavelength lasing at 2.1 and 2.9µm: Spectroscopy and laser performance, J. Appl. Phys. 91, 11–17 (2002)

    Article  ADS  Google Scholar 

  190. B. M. Antipenko, A. S. Glebov, T. I. Kiseleva, V. A. Pismennyi: 2.12 µm HoYAG laser, Soviet Tech. Phys. Lett. 11(6), 284–285 (1985) [transl. from: Pis’ma Zhur. Tekhnich. Fiz. 11, 682-5 (1985)]

    Google Scholar 

  191. P. Albers, E. Stark, G. Huber: Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire, J. Opt. Soc. Am. B 3, 134–139 (1986)

    ADS  Google Scholar 

  192. B. M. Antipenko, A. S. Glebov, T. I. Kiseleva, V. A. Pismennyi: A new spectro-scopic scheme of an active medium for the 2-µm band, Opt. Spectrosc. 60(1), 95–97 (1986) [transl. from: Optika I Spektroskopiya 60(1), 153–157 (1986)]

    ADS  Google Scholar 

  193. E.W. Duczynski, G. Huber, V. G. Ostroumov, I.A. Shcherbakov: CW double cross pumping of the 5I75I8 laser transition in Ho3+-doped garnets, Appl. Phys. Lett. 48, 1562–1563 (1986)

    Article  ADS  Google Scholar 

  194. B. M. Antipenko, A. S. Glebov, L. I. Krutova, V. M. Solntsev, L. K. Sukhareva: Active medium of lasers operating in the 2-smm spectral range and utilizing gadolinium scandium gallium garnet crystals, Sov. J. Quantum Electron. 16, 1986 [transl. from: Kvant. Elektron. 13, 1521–3 (1986)]

    Google Scholar 

  195. B. M. Antipenko, L. I. Krutova, L. K. Sukhareva: Cascade lasing of CSGG-Cr3+Tm3+Ho3+ crystals, Opt. Spectrosc. 61, 414–416 (1986) [transl. from: Optika I Spektroskopiya 61(3), 659–661 (1986)]

    ADS  Google Scholar 

  196. I.T. Sorokina, A.F. Umyskov, V.A. Smirnov, I.A. Shcherbakov: The Tm-Tm and Tm-Ho energy transfer studies in YSGG and GSAG crystals at the resonant excitation of Tm and Ho ions, OSA Proc. Adv. Solid State Lasers 17, 159–161, T.Y. Fan, B.E. Chai (Eds.) (Opt. Soc. Am., Washington, DC 1994)

    Google Scholar 

  197. A.N. Alpat’ev, E.V. Zharikov, S.P. Kalitin, V.V. Laptev, V. G. Ostroumov, A.M. Prokhorov, Z. C. Saidov, V.A. Smirnov, I.T. Sorokina, A.F. Umyskov, I. A. Shcherbakov: The room-temperature laser action on 5I7 5I8 transition of holmium ions in yttrium-scandium-gallium garnet with chromium, thulium, and holmium ions (YSGG:Cr3+, Ho3+, Tm3+), Sov. J. Quant. Electron. 16, 1404 (1986)

    Article  ADS  Google Scholar 

  198. A.I. Feodorov, G.B. Loutts, M.A. Noginov, I.A. Shcherbakov, V. A. Smirnov, I. T. Sorokina, V. B. Tsvetkov, A. I. Zagumennyi, E.V. Zharikov, D.A. Zubenko: New promising low Sc3+ content garnet YSAG:Cr3+,Ho3+,Tm3+ for 2-µm lasers, OSA Proc. Adv. Solid State Lasers 13, 148–151, L.L. Chase, A.A. Pinto (Eds.) (Opt. Soc. Am., Washington, DC 1992)

    Google Scholar 

  199. E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I.A. Shcherbakov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, OSA Trends Opt. Photonics 19, 197–200, W.R. Bosenberg, M.M. Fejer (Eds.) (Opt. Soc. Am., Washington, DC 1998)

    Google Scholar 

  200. N.P. Barnes, E.D. Filer, F.L. Naranjo, W. J. Rodriguez, M.R. Kokta: Spectroscopy and lasing properties of Ho:Tm:LuAG, Opt. Lett. 18, 708–710 (1993)

    Article  ADS  Google Scholar 

  201. H. Hemmati: 2.07 µm CW diode-laser-pumped Tm,Ho:YLiF4 room-temperature laser, Opt. Lett. 14, 435 (1989)

    ADS  Google Scholar 

  202. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke: The mechanism of Tm to Ho energy transfer in LiYF4, J. Phys. 4, 8525–8542 (1992)

    Google Scholar 

  203. M. A. Noginov, S. G. Semenkov, I. A. Shcherbakov, V. A. Smirnov: Energy transfer (Tm to Ho) and upconversion process in YSGG:Cr3+:Tm3+:Ho3+laser crystals, OSA Proc. Adv. Solid State Lasers 10, 178–82 (Opt. Soc. Am., Washington, DC 1991)

    Google Scholar 

  204. E. Wintner, F. Krausz, M.A. Noginov, V.A. Smirnov, I.T. Sorokina, C. Spielmann, I. A. Shcherbakov: Interaction of Ho3+ and Tm3+ ions in YSGG:Cr3+,Ho3+,Tm3+ at the strong selective excitation, Laser Phys. 2, 138 (1992)

    Google Scholar 

  205. R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta: Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers, Opt. Mater. 1, 111–124 (1992)

    Article  Google Scholar 

  206. B.M. Antipenko, A. S. Glebov, T.I. Kiseleva, V. A. Pisrsmennyi: Conversion of absorbed energy in YAG:Cr3+,Tm3+,Ho3+ crystals, Opt. Spectrosc. 64, 221–224 (1988) [transl. from: Opt. Spektrosk. 64, 373–377 (1988)]

    ADS  Google Scholar 

  207. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, M. Noginov: Efficient continuous-wave TEM00 and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser, Opt. Lett. 21, 204–206 (1996)

    Article  ADS  Google Scholar 

  208. A. G. Okhrimchuk, L.N. Butvina, E. M. Dianov, N.V. Lichkova, V.N. Zavgorodnev, E. Sorokin, I. T. Sorokina: Population dynamics of the 7F5 Level of Tb3+ ions doped in the KPb2Cl5, Int. Quantum Electron. Conf. (IQEC 2002) Moscow, (2002) paper QSuR24

    Google Scholar 

  209. S. I. Pekar: On the influence of the lattice deformations by electrons on the optical and electrical properties of crystals, Sov. Phys. Usp. 50, 197 (1953)

    Google Scholar 

  210. D. Spence, P. Kean, W. Sibbett: 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16, 41 (1991)

    ADS  Google Scholar 

  211. M. Piche: Beam reshaping and self-mode-locking in nonlinear laser resonators, Opt. Commun. 86, 156–160 (1991)

    Article  ADS  Google Scholar 

  212. Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz: Ultrabroadband femtosec-ond lasers, IEEE J. Quantum Electron. 30, 1100–1114 (1994)

    Article  ADS  Google Scholar 

  213. Y. Chen, F. X. Kärtner, U. Morgner, S.H. Cho, H.A. Haus, E.P. Ippen, J. G. Fujimoto: Dispersion-managed mode locking, J. Opt. Soc. Am. B 16, 1999–2004 (1999)

    Article  ADS  Google Scholar 

  214. R. Mellish, N.P. Barry, S. C.W. Hyde, R. Jones, P. M.W. French, C. J. Van der Poel, A. Valster: Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier, Opt. Lett. 20, 2312–2314 (1995)

    ADS  Google Scholar 

  215. V. P. Yanovsky, F.W. Wise, A. Cassanho, H. P. Jenssen: Femtosecond diode-pumped Cr:LiSGAF lasers, IEEE J. Quantum Electron. 2, 465 (1996)

    Article  Google Scholar 

  216. B.M. Antipenko, A. S. Glebov, T.I. Kiseleva, V.A. Pisrsmennyi: 2.12 µm Ho:YAG laser, Pisma Zh. Tech. Fiz. 11, 682 (1985) [English transl. in: Sov. Tech. Phys. Lett. 11, 284 (1985)]

    Google Scholar 

  217. R. J. Beach: Theory and optimization of lens ducts, Appl. Opt. 35, 2005–2015 (1996)

    ADS  Google Scholar 

  218. R.J. Beach, M.A. Emanuel, B.L. Freitas, J.A. Skidmore, N.W. Carlson, J. Benett, R. W. Solarz: Applications of microlens-conditioned laser diode arrays, Proc. SPIE 2383, 283–297 (1995)

    Article  ADS  Google Scholar 

  219. M. Tsunekane, N. Taguchi, H. Inaba: Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends, Appl. Opt. 38 (1999)

    Google Scholar 

  220. S.A. Payne, R. J. Beach, C. Bibeau, C.A. Ebbers, M.A. Emanuel, E. C. Honea, C.D. Marshall, R.H. Page, K.I. Schaffers, J.A. Skidmore, S.B. Sutton, W. F. Krupke: Diode arrays, crystals, and thermal management for solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997)

    Article  Google Scholar 

  221. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower: Scalable concept for diode-pumped high-power solid-state-lasers, Appl. Phys. B 58, 365 (1994)

    ADS  Google Scholar 

  222. C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel: A 1-kW CW thin disc laser, IEEE J. Sel. Topics Quantum Electron. 6, 650–657 (2000)

    Article  Google Scholar 

  223. N. Berner, A. Diening, E. Heumann, G. Huber: Tm:YAG: a comparison between endpumped laser-rods and the “thin-disk”-setup, OSA Trends Opt. Photonics 26, 463–467 (Opt. Soc. Am., Washington, DC 1999)

    Google Scholar 

  224. A. Dergachev, K. Wall, P.F. Moulton: A CW side-pumped Tm:YLF laser, OSA Trends Opt. Photonics 68, 343–350 (Opt. Soc. Am., Washington, DC 2002)

    Google Scholar 

  225. E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skidmore, M. A. Emanuel, S.A. Payne: 115-W Tm:YAG diode-pumped solid-state laser, IEEE J. Quantum Electron. 33, 1592–1600 (1997)

    Article  ADS  Google Scholar 

  226. B. Struve, G. Huber: Properties and medical applications of near-IR solid-state lasers, J. Phys. IV Colloque. 1, 3–6 (1991)

    Google Scholar 

  227. C. Li, J. Song, D. Shen, Y. Cao, N.S. Kim, K. Ueda: Flash-lamp-pumped acousto-optic Q-switched Cr-Tm:YAG Laser, Opt. Rev. 7, 58–61 (2000)

    Article  Google Scholar 

  228. F. J. Duarte: Tunable Lasers Handbook (Academic Press, San Diego 1995)

    Google Scholar 

  229. B. Lyot: Un monochromateur a grand champ utilizant les interferences en lumiére polarisée, Compt. Rend. 197, 1593 (1933)

    Google Scholar 

  230. J. W. Evans: The birefringent filter, J. Opt. Soc. Am. 39, 229–242 (1949)

    ADS  Google Scholar 

  231. A. L. Bloom: Modes of a laser resonator containing tilted birefringent plates, J. Opt. Soc. Am. 64, 447–452 (1974)

    Article  ADS  Google Scholar 

  232. D.J. Taylor, S.E. Harris, S.T.K. Nieh, T.W. Hänsch: Electronic tuning of a dye laser using the acousto-optic filter, Appl. Phys. Lett. 19, 269–271 (1971)

    Article  ADS  Google Scholar 

  233. T. Yano, A. Watanabe: Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction, Appl. Opt. 15, 2250–2258 (1976)

    ADS  Google Scholar 

  234. C. Chappuis, J. P. Goedgebuer: Broad band electro-optic tuning of a CW dye laser, Opt. Commun. 47, 12–17 (August, 1983)

    Google Scholar 

  235. V. G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook on Nonlinear Optical Crystals, Springer Ser. Opt. Sci. 64 (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  236. S. Lovold, P.F. Moulton, D.K. Killinger, N. Menyuk: Frequency tuning characteristics of a Q-switched Co:MgF2 laser, IEEE J. Quantum Electron. 21, 202–208 (1985)

    Article  ADS  Google Scholar 

  237. M. Frenz, H. Pratisto, F. Konz, E.D. Jansen, A. J. Welch, H.P. Weber: Comparison of the effects of absorption coefficient and pulse duration of 2.12-µm and 2.79-µm radiation on laser ablation of tissue, IEEE J. Quantum Electron. 32, 2025–2036 (1996)

    Article  ADS  Google Scholar 

  238. R. Brinkmann, C. Hansen: Beam-profile modulation of thulium laser radiation applied with multimode fibers and its effect on the threshold fluence to vaporize water laser surgery application, Appl. Opt. 39, 3361–3371 (2000)

    Article  ADS  Google Scholar 

  239. N.M. Wannop, M.R. Dickinson, A. Charlton, T.A. King: Q-switching the erbium-YAG laser, J. Mod. Opt. 41, 2043–2053 (1994)

    Article  ADS  Google Scholar 

  240. B. Pelz, M. K. Schott, M. H. Niemz: Electro-optic mode locking of an Erbium:YAG laser with a RF resonance transformer, Appl. Opt. 33, 364–367 (1994)

    ADS  Google Scholar 

  241. H. Voss, F. Massmann: Diode pumped, Q-switched erbium lasers with short pulse duration, OSA Trends Opt. Photonics Ser. 10, 217–221 (Opt. Soc. Am., Washington, DC 1997)

    Google Scholar 

  242. E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skid-more, M. A. Emanuel, S.A. Payne: 115-W Tm:YAG diode-pumped solid-state laser, IEEE J. Quantum Electron. 33, 1592–1600 (1997)

    Article  ADS  Google Scholar 

  243. C. Li, J. Song, D. Shen, N.S. Kim, K. Ueda, Y. Huo, S. He, Y. Cao: Diode-pumped high-efficiency Tm:YAG lasers, Opt. Express 4, 12–18 (1999)

    Article  ADS  Google Scholar 

  244. A. Finch, J. H. Flint: Diode-pumped 6-mJ repetitively-Q-switched Tm,Ho,YLF laser, CLEO’95, Tech. Digest Series 15, Paper CWH2 232 (1995)

    Google Scholar 

  245. S. Schnell, V.G. Ostroumov, J. Brequet, W.A.R. Lüthy, H.P. Weber, I. A. Scherbakov: Acoustooptic Q-switching of erbium lasers, IEEE J. Quantum Electron. 26, 1111–1114 (1990)

    Article  ADS  Google Scholar 

  246. P. Maak, L. Jakab, P. Richter, H. J. Eichler, B. Liu: Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-µm wavelength, Appl. Opt. 39, 3053–3059 (2000)

    Article  ADS  Google Scholar 

  247. I. N. Court, K. K. von Willisen: Frustrated total internal reflection and application of its principle to laser cavity design, J. Appl. Opt. 3, 719–726 (1964)

    Article  ADS  Google Scholar 

  248. Kh. S. Bagdasarov, V.P. Danilov, V.I. Zhekov, T. M. Murina, A.A. Manenkov, M.I. Timoshechkin, A.M. Prokhorov: Pulse-periodic Y3Al5O12:Er3+ laser with high activator concentration, Sov. J. Quantum Electron. 8, 83 (1978)

    Article  ADS  Google Scholar 

  249. F. Könz, M. Frenz, V. Romano, M. Forrer, H. P. Weber, A.V. Kharkovskiy, S.I. Khomenko: Active and passive Q-switching of a 2.79 µm Er:Cr:YSGG laser, Opt. Commun. 103, 398–404 (1993)

    Article  ADS  Google Scholar 

  250. A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, W. Ertmer: 2.70 µm CrEr:YSGG with high output energy and FTIR-Q-Switch, Opt. Commun. 125, 90–94 (1996)

    Article  ADS  Google Scholar 

  251. H. J. Eichler, B. Liu, M. Kayser, S.I. Khomenko: Er:YAG-laser at 2.94 µm Q-switched by a FTIR-shutter with silicon output coupler and polarizer, Opt. Mater. 5, 259–265 (1996)

    Article  Google Scholar 

  252. Y. T. Tzong, M. Birnbaum: Q-switched 2-µm lasers by use of a Cr2+:ZnSe saturable absorber, Appl. Opt. 40, 6633–6637 (2001)

    Article  ADS  Google Scholar 

  253. E. Sorokin, I. T. Sorokina: Coupled-cavity passive Q-switching, paper CThO6, Conference on Lasers and Electro-Optics Europe, Nice, France 2000; in CLEO Europe’2000 Tech. Digest (2000) p. 359

    Google Scholar 

  254. A.M. Malyarevich, I.A. Denisov, N.N. Posnov, P.V. Prokoshin, K.V. Yumashev, A. A. Lipovskii: PbS(Se)-doped glasses as passive Q-switches for 1.5-µm Er:glass and 2.1-µm Ho:YAG lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 34, 225 (Opt. Soc. Am., Washington, DC 2000)

    Google Scholar 

  255. A.M. Malyarevich, P.V. Prokoshin, M.I. Demchuk, K.V. Yumashev, A.A. Lipovskii: Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSedoped glass, Appl. Phys. Lett. 78, 572–573 (2001)

    Article  ADS  Google Scholar 

  256. K. L. Vodopyanov, A. V. Lukashev, C. C. Phillips, I. T. Ferguson: Passive mode locking and Q-switching of an erbium 3 µm laser using thin InAs epilayers grown by molecular beam epitaxy, Appl. Phys. Lett. 59, 1658–1660 (1991)

    Article  ADS  Google Scholar 

  257. K. L. Vodopyanov, A. V. Lukashev, C. C. Phillips: Nano-and picosecond 3 mm Er:YSGG lasers using InAs as passive Q-switchers and mode-lockers, Opt. Commun. 95, 87–91 (1993)

    Article  ADS  Google Scholar 

  258. K. L. Vodopyanov, L. A. Kulevskii, P. P. Pashinin, A. M. Prokhorov: Water and ethanol as bleachable absorbers of radiation in an yttrium-erbium-aluminum garnet laser (λ = 2.94 µm), Sov. Phys. JETP 55, 1049–1051 (1982)

    Google Scholar 

  259. K. L. Vodopyanov, R. Shori, O. M. Stafsudd: Generation of Q-switched Er:YAG laser pulses using evanescent wave absorption in ethanol, Appl. Phys. Lett. 72, 2211–2213 (1998)

    Article  ADS  Google Scholar 

  260. Yu. D. Zavartsev, A.I. Zagumennyi, L.A. Kulevskii, A.V. Lukashev, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov: Q-switching in a Cr3+:Yb3+:Ho3+:YSGG crystal laser based on the 5I65I7 (λ = 2.92 µm) transition, J. Quantum Electron. 29, 295–297 (1999) [transl. from: Kvant. Elektron. 27, 13–15 (1999)]

    Article  ADS  Google Scholar 

  261. J. Breguet, W. Lüthy, H.P. Weber: Q-switching of YAG:Er laser with a soap film, Opt. Commun. 82, 488–490 (1991)

    Article  ADS  Google Scholar 

  262. B. C. Johnson, P. F. Moulton, A. Mooradian: Mode-locked operation of Co:MgF2 and Ni:MgF2 lasers, Opt. Lett. 10, 116–118 (1984)

    ADS  Google Scholar 

  263. F. Heine, E. Heumann, G. Huber, K. L. Schlepper: Mode locking of room-temperature CW thulium and holmium lasers, Appl. Phys. Lett. 60, 1161–1162 (1992)

    Article  ADS  Google Scholar 

  264. E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I. A. Shcherbakov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, OSA Trends Opt. Photonics 19 197–200, W.R. Bosenberg, M.M. Fejer (Eds.) (Opt. Soc. Am., Washington, DC 1998)

    Google Scholar 

  265. J. F. Pinto, L. Esterowitz, G. H. Rosenblatt: Continuous-wave mode-locked 2-µm Tm:YAG laser, Opt. Lett. 17, 731–732 (1992)

    ADS  Google Scholar 

  266. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, C. R. Pollock: Mode-locked Cr2+:ZnSe laser, Opt. Lett. 25, 168–170 (2000)

    Article  ADS  Google Scholar 

  267. I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Active and passive mode-locking of the Cr2+:ZnSe laser, in Tech. Dig. Adv. Solid-State Lasers (Opt. Soc. Am., 2001), pp. 87–89

    Google Scholar 

  268. D. E. Spence, P. N. Kean, W. Sibbett: 60-fs pulse generation from a self-mode-locke Ti:sapphire laser, Opt. Lett. 16, 42–44 (1991)

    Article  ADS  Google Scholar 

  269. U. Keller, K. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au: Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996)

    Article  Google Scholar 

  270. G. Steinmeyer, U. Morgner, M. Ostermeyer, F. Mitschke, H. Welling: Subpi-cosecond pulses near 1.9 µm from a synchronously pumped color-center laser, Opt. Lett. 18, 1544–1546 (1993)

    Article  ADS  Google Scholar 

  271. K. Möllmann, M. Schrempel, B.K. Yu, W. Gellermann: Subpicosecond and continuous-wave laser operation of (F2 +)h and (F2 +)ah color-center lasers in the 2-µm range, Opt. Lett. 19, 960–962 (1994)

    Article  ADS  Google Scholar 

  272. T. Brabec. Ch. Spielmann, P. F. Curley, F. Krausz: Kerr lens mode locking, Opt. Lett. 17, 1292–1294 (1992).

    ADS  Google Scholar 

  273. C. L. Cesar, M. N. Islam, C. E. Soccolich, R. D. Feldman, R. F. Austin, K. German: Femtosecond KCl:Li and RbCl:Li color-center lasers near 2.8 µm with a HgCdTe multiple-quantum-well saturable absorber, Opt. Lett. 15, 1147–1149 (1990)

    ADS  Google Scholar 

  274. P. F. Moulton: Pulsed-pumped operation of divalent transition-metal lasers, IEEE J. Quantum Electron. 18, 1185 (1982)

    Article  ADS  Google Scholar 

  275. P. F. Moulton: Tunable paramagnetic-ion lasers, in Laser Handbook, Vol. 5, M. Bass, M.L. Stich (Eds.) (North-Holland, Amsterdam, 1985) p. 203

    Google Scholar 

  276. J. M. Breteau, D. Mekhenin, F. Auzel: Study of the Ni2+:MgF2 tunable laser, Rev. Phys. Appl. 22, 1419 (1987) (in French)

    Google Scholar 

  277. P. F. Moulton, A. Mooradian: Broadly tunable CW operation of Ni:MgF2 and Co:MgF2 lasers, Appl. Phys. Lett. 35, 838 (1979)

    Article  ADS  Google Scholar 

  278. P. F. Moulton, A. Mooradian: Tunable transition-metal-doped solid-state lasers, in Laser Spectroscopy IV, H. Walther, K.W. Rothe (Eds.) (Springer, Heidelberg, Berlin 1979)

    Google Scholar 

  279. R. Moncorge, T. Benyattou: Excited-state absorption of Ni2+ in MgF2 and MgO, Phys. Rev. B 37, 9186 (1988)

    Article  ADS  Google Scholar 

  280. R. G. Pappalardo, D.L. Wood, R. C. Linares: Optical absorption study of Nidoped oxide systems I, J. Chem. Phys. 35, 1460 (1961)

    Article  ADS  Google Scholar 

  281. M. V. Iverson, W. A. Sibley: Temperature dependence of Ni2+ luminescence in KZnF3, MgF2 and MgO, J. Lumin. 20, 311 (1979)

    Article  Google Scholar 

  282. J. Koetke, K. Petermann, G. Huber: Infrared excited state absorption of Ni2+-doped crystals, J. Lumin. 60&61, 197–200 (1994)

    Article  Google Scholar 

  283. J. Koetke, K. Petermann, G. Huber: Spectroscopy of Ni2+-doped garnets and perovskites for solid state lasers, J. Lumin. 48&49, 564–568 (1991)

    Article  Google Scholar 

  284. D. Welford, P. F. Moulton: Room-temperature operation of a Co:MgF2 laser, Opt. Lett. 13, 975 (1988)

    ADS  Google Scholar 

  285. H. Manaa, Y. Guyot, R. Moncorge: Spectroscopic and laser properties of Co2+-doped single crystals, Phys. Rev. B 48, 3633 (1993)

    Article  ADS  Google Scholar 

  286. D.M. Rines, P.F. Moulton, D. Welford, G. A. Rines: High-energy operation of a Co:MgF2 laser, Opt. Lett. 19, 628 (1994)

    ADS  Google Scholar 

  287. R. G. Pappalardo, D. L. Wood, R. C. Linares: Optical absorption study of Codoped oxide systems II, J. Chem. Phys. 35, 2041 (1961)

    Article  ADS  Google Scholar 

  288. S. Lovold, P. F. Moulton, D.K. Killinger, N. Menyuk: Frequency tuning characteristics of a Q-switched Co:MgF2 laser 21, 202–208 (1985)

    Google Scholar 

  289. P. F. Moulton: An investigation of the Co:MgF2 laser system, IEEE J. Quantum Electron. 21, 1582–1595 (1985)

    Article  ADS  Google Scholar 

  290. A. M. Fox, A. C. Maciel, J. F. Ryan: Efficient CW performance of a Co:MgF2 laser operating at 1.5-2.0 µm Opt. Commun. 59, 142–144 (1986)

    Google Scholar 

  291. W. Künzel, W. Knierim, U. Dürr: CW infrared laser action of optically pumped Co2+:KZnF3, Opt. Commun. 36, 383 (1981)

    Article  ADS  Google Scholar 

  292. K. R. German, U. Dürr, V. Künzel: Tunable single-frequency continuous-wave laser action in Co2+:KZnF3, Opt. Lett. 11, 12–14 (1986)

    Article  ADS  Google Scholar 

  293. U. Dürr: Vibronic solid state lasers: the transition metal ion laser, Laser und Optoelektronik 15, 31–39 (1983)

    Google Scholar 

  294. M. D. Sturge: Temperature dependence of multiphonon nonradiative decay at an isolated impurity center, Phys. Rev. B. 8, 6–14 (1973)

    Article  ADS  Google Scholar 

  295. A. Di Lieto: Development of a CW Co:MgF2 laser, Opt. Laser Eng. 39, 305–308 (2003)

    Article  Google Scholar 

  296. R.H. Page, L.D. DeLoach, K.I. Schaffers, F.D. Patel, R.L. Beach, S.A. Payne, W.F. Krupke: Recent developments in Cr2+-doped II-VI compound lasers, in OSA Trends Opt. Photonics 1, 130–136, S.A. Payne, C.R. Pollock (Eds.) (Opt. Soc. Am., Washington, DC 1996)

    Google Scholar 

  297. W. F. Krupke, R. H. Page, L. D. DeLoach, S. A. Payne: Transition-metal doped sulphide, selenide, and telluride laser crystal and lasers, US Patent 5,541,948 from July 30 (1996)

    Google Scholar 

  298. U. Hömmerich, X. Wu, V.R. Davis, S.B. Trivedi, K. Grasze, R. J. Chen, S.W. Kutcher: Demonstration of room-temperature laser action at 2.5 µm from Cr2+:Cd0.85Mn015Te, Opt. Lett. 22, 1180–1182 (1997)

    Article  ADS  Google Scholar 

  299. S.B. Trivedi, K. Grasze, R. J. Chen, S.W. Kutcher, U. Hömmerich, X. Wu: Jae Tae Seo, Chromium doped cadmium manganese telluride: a novel solidgain media for mid-infrared lasers, Phys. Semicond. Dev. 2, 762–767 (1998)

    Google Scholar 

  300. K.L. Schepler, S. Kueck, L. Shiozawa: Cr2+ emission spectroscopy in CdSe, J. Lumin. 72–74, 116–117 (1997)

    Article  Google Scholar 

  301. J. McKay, K.L. Schepler, G.C. Catella: Efficient grating-tuned mid-infrared Cr2+:CdSe laser, Opt. Lett. 24, 1575–1577 (1999)

    Article  ADS  Google Scholar 

  302. A. Sennaroglu, A. Ozgun Konza, C. R. Pollock: Continuous-wave power performance of a 2.47-µm Cr2+:ZnSe laser: experiment and modelling, IEEE J. Quantum Electron. 36, 1199–1205 (2000)

    Article  ADS  Google Scholar 

  303. I.T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, V. G. Shcherbitsky, V. E. Kisel, N. V. Kuleshov, V. I. Levchenko: Ultrabroadband tunable continuous-wave mid-infrared Cr:ZnSe lasers, to be published

    Google Scholar 

  304. A.V. Podlipensky, V. G. Shcherbitsky, N.V. Kuleshov, V.I. Levchenko, V. N. Yakimovich, M. Mond, E. Heumann, G. Huber, H. Kretschmann, S. Kück: Efficient laser operation and continuous-wave diode pumping of Cr2+: ZnSe single crystals, Appl. Phys. B. 72, 253–255 (2001)

    ADS  Google Scholar 

  305. G. Tocci, M. Vannini, E. Giorgetti, E. Sorokin, I. Sorokina, to be published

    Google Scholar 

  306. T. D. Krauss, F.W. Wise: Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe and ZnS, Appl. Phys. Lett. 65, 1739–1741 (1994)

    Article  ADS  Google Scholar 

  307. M.E. Innocenzi, R.T. Swimm, M. Bass, R.H. French, M.R. Kokta: Optical absorption in undoped yttrium aluminum garnet, J. Appl. Phys. 68,3, 1200–1204, (1990)

    Article  ADS  Google Scholar 

  308. G.-M. Schucan, R. G. Ispasoiu, A. M. Fox, J. F. Ryan: Ultrafast two-photon nonlinearities in CdSe near 1.5 µm studied by interferometric autocorrelation, IEEE J. Quantum Electronics 34, 1374 (1998)

    Article  ADS  Google Scholar 

  309. Landolt Börnstein, Numerical data and functional relationships in Science and Technology, in O. Madelung (Ed.): Non-Tetrahedrally Bonded Elements and Binary Compounds I, New Series, Group III, Vol. 41c, Semiconductors (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  310. E. Sorokin, I.T. Sorokina, A. DiLieto, M. Tonelli, R.H. Page: Tunable diode-pumped continuous-wave single crystal and ceramic Cr2+:ZnSe lasers, in CLEO/Pacific Rim 2001, Tokyo Tech. Digest (2001) paper WJPD1-1

    Google Scholar 

  311. E. Sorokin, I.T. Sorokina, A. DiLieto, M. Tonelli, P. Minguzzi: Mode-locked ceramic Cr2+:ZnSe laser, Advanced Solid-State Photonics’2003, St. Antonio, USA (2003) paper TUB-17

    Google Scholar 

  312. A. Zunger: Solid State Physics 89 (Academic Press, New York 1986) p. 275

    Google Scholar 

  313. J. T. Vallin, G. A. Slack, S. Roberts, A. E. Hughes: Near and far infrared absorption in Cr doped ZnSe, Solid State Commun. 7, 1211 (1969)

    Article  ADS  Google Scholar 

  314. S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda: 100 h II-VI blue-green laser diode, Electron. Lett. 32, 552 (1996)

    Article  Google Scholar 

  315. H. Ulchiike: Review of flat-panel displays, liquid crystal displays, plasma displays, etc., in Proc. Fourth Int. Workshop of Electroluminescence, S. Shionoya, H. Kobayashi (Eds.) (Springer, Berlin, Heidelberg 1989) p. 238–245

    Google Scholar 

  316. K. Grasza, S.B. Trivedi, Yu-Zengchen, S.W. Kutcher, W. Palosz, G. A. Brost: Low supersaturation nucleation and contactless growth of photorefractive ZnTe crystals, J. Crystal Growth 174, 719–725 (1997)

    Article  ADS  Google Scholar 

  317. A. Partovi, J. Millerd, E.M. Garmire, M. Ziari, W.H. Steier, S.B. Trivedi, M.B. Klein: Photorefractivity at 1.5 µm in CdTe:V, Appl. Phys. Lett. 57, 846–848 (1990)

    Article  ADS  Google Scholar 

  318. A. Fazzio, M. J. Caldas, A. Zunger: Many-electron multiplet effects in the spectra of 3d-impurities in heteropolar semiconductors, Phys. Rev. B 30, 3430 (1984)

    Article  ADS  Google Scholar 

  319. C. S. Kelley, F. Williams: Optical absorption spectra of chromium-doped zinc sulphide crystals, Phys. Rev. B 2, 3 (1970)

    Article  ADS  Google Scholar 

  320. R. Pappalardo, R. E. Dietz: Absorption spectra of transition ions in CdS crystals, Phys. Rev. 123, 1188 (1961)

    Article  ADS  Google Scholar 

  321. H. Nelkowski, G. Grebe: IR-luminescence of ZnS:Cr, J. Lumin. 1/2, 88–93 (1970)

    Article  Google Scholar 

  322. G. Grebe, H. J. Schulz: Interpretation of excitation spectra of ZnS:Cr2+ by fitting the eigenvalues of the Tanabe-Sugano matrices, Phys. Stat. Sol. (b) 54, 69–72 (1972)

    Article  ADS  Google Scholar 

  323. G. Grebe, H. J. Schulz: Luminescence of Cr2+ centers and related optical interactions involving crystal field levels of chromium ions in ZnS, Z. Naturf. 29a, 1803 (1974)

    ADS  Google Scholar 

  324. G. Grebe, G. Roussos, H. J. Schulz: Infrared luminescence of ZnSe:Cr crystals, J. Lumin. 12/13, 701 (1976)

    Article  Google Scholar 

  325. B.D. Bhattacharya: Jahn-Teller effect in ESR study of Cr2+ in II-VI semiconductors, Phys. Stat. Sol. (b) 71, K181–K185 (1975)

    Article  ADS  Google Scholar 

  326. A. L. Natadze, A. I. Ryskin: Jahn-Teller coupling of Cr2+-ion with degenerate modes in ZnS, ZnSe, and ZnTe crystals: microscopic treatment, Phys. Stat. Sol. (b) 97, 175–185 (1980)

    Article  ADS  Google Scholar 

  327. R. Renz, H. J. Schulz: Temperature dependence of the lifetime of excited states for 3d transition element centers in II-VI crystals, J. Lumin. 24/25, 221–224 (1981)

    Article  Google Scholar 

  328. G. Goetz, H. J. Schulz: Decay of internal luminescence transitions of 3d-impurities in II-VI compounds-recent experiments and refined interpretations, J. Lumin. 40/41, 415–416 (1988)

    Article  Google Scholar 

  329. P. Dahan, V. Fleurov: Possibility of a metastable state for transition-metal impurity in semiconductor, Phys. Rev. B 53, 12845 (1996)

    Article  ADS  Google Scholar 

  330. A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S. H. Morgan, C. I. Rablau, C.H. Su, S. Feth, R.H. Page, K.I. Schaffers, S.A. Payne: Preparation conditions of chromium doped ZnSe and their infrared luminescence properties, J. Crystal Growth 225, 249–256 (2001)

    Article  ADS  Google Scholar 

  331. V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, L. I. Postnova, V. I. Levchenko, E. Sorokin, I. T. Sorokina: Luminescence lifetime measurements in diffusion doped Cr:ZnSe, ECLEO’2003, Munich (June 2003)

    Google Scholar 

  332. J. McKay, K. L. Schepler: Solid-state and diode-laser technology review, May 21–24, Albuquerque, NM, SS-6 (2001)

    Google Scholar 

  333. S.B. Mirov, V.V. Fedorov, K. Graham, I. S. Moskalev, E. Sorokin, I.T. Sorokina, V. Gapontsev, D. Gapontsev, V.V. Badikov, V.V. Panyutin: Diode, fiber, and potentially electrically pumped Cr2+:ZnS mid-IR external cavity and microchip lasers, Tech. Digest 5th Int. Conf. Mid-Infrared Optoelectronics Materials and Devices, Sept. 2002, Annapolis, MD (2002)

    Google Scholar 

  334. I.T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, A. Di Lieto, M. Tonelli: Continuous-wave tunable Cr2+:ZnS laser, Appl. Phys B 74, 607–611 (2002)

    Article  ADS  Google Scholar 

  335. P. Albers, E. Stark, G. Huber: Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire, J. Opt. Soc. Am. B 3, 134 (1986)

    Article  ADS  Google Scholar 

  336. R.H. Page, J. A. Skidmore, K.I. Schaffers, R. J. Beach, S.A. Payne, W. F. Krupke: Demonstrations of diode-pumped and grating tuned ZnSe:Cr2+ lasers, Opt. Soc. Am. Trends Opt. Photonics, C. R. Pollock, W. R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997), pp. 208–210

    Google Scholar 

  337. I.T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. Page, K. Schaffers: Efficient broadly tunable Cr2+:ZnSe laser, Conf. Lasers and Electro-Optics Europe, Nice, France, in CLEO Europe’2000 Tech. Digest (2000) p. 261, paper CWH4

    Google Scholar 

  338. E. Sorokin, I. T. Sorokina, R. H. Page: Room-temperature CW diode-pumped Cr2+:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 101–105, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  339. M. Mond, E. Heumann, G. Huber, H. Kretschmann, S. Kück, A.V. Podlipensky, V. G. Shcherbitsky, N.V. Kuleshov, V.I. Levchenko, V. N. Yakimovich: Continuous-wave diode pumped Cr2+:ZnSe and high power laser operation, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 162–165, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  340. E. Sorokin, I. T. Sorokina: Tunable diode-pumped continuous-wave Cr2+:ZnSe laser, Appl. Phys. Lett. 80, 3289–3291 (2002)

    Article  ADS  Google Scholar 

  341. M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kück, V.I. Levchenko, V.N. Yakimovich, V. G. Shcherbitsky, V.E. Kisel, N.V. Kuleshov, M. Rattunde, J. Schmitz, R. Kiefer, J. Wagner: 1.9-µm and 2.0-µm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe, Opt. Lett. 27, 1034–1036 (2002)

    Article  ADS  Google Scholar 

  342. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, C. R. Pollock: Mode-locked Cr2+:ZnSe laser, Opt. Lett. 25, 168–170 (2000)

    Article  ADS  Google Scholar 

  343. I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Active and passive mode-locking of the Cr2+:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 157–161, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  344. I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. H. Page, K. I. Schaffers: Tunable diode-pumped continuous-wave operation and passive mode-locking of Cr2+:ZnSe laser, Tech. Digest CLEO/Europe Focus Meeting 2001, Munich (2001)

    Google Scholar 

  345. G. J. Wagner, T. J. Carrig: Power scaling of Cr2+:ZnSe lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 50, 506–510, C. Marshall (Ed.) (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  346. J.B. McKay, W.B. Roh, K.L. Schepler: 4.2 W Cr2+:ZnSe face cooled disk laser, paper CMY3, in Opt. Soc. Am. Trends in Optics and Photonics, Vol. 73, Conference on Lasers and Electro-Optics, OSA Tech. Digest, Postconference Edition (Opt. Soc. Am., Washington, DC 2002), pp. 119–120

    Google Scholar 

  347. W. Alford, G. Wagner, J. Keene, T. Carrig: High power and Q-switched Cr:ZnSe laser, paper MA-8, Advanced Solid-State Photonics 2003, St. Antonio, USA (2003)

    Google Scholar 

  348. M. Mond, D. Albrecht, H. M. Kretschmann, E. Heumann, G. Huber, S. Kück, V.I. Levchenko, V.N. Yakimovich, V.G. Shcherbitsky, V.E. Kisel, N. V. Kuleshov: Er doped fiber amplifier pumped Cr2+:ZnSe laser, Phys. Stat. Sol. (a) 188(4), R3–R5 (2001)

    Article  ADS  Google Scholar 

  349. S. B. Mirov, V. V. Fedorov, K. Graham, I. Moskalev, V. Badikov, V. Panyutin: Er-fiber laser pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers, Opt. Lett. 27, 909–911 (2002)

    Article  ADS  Google Scholar 

  350. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi: Semiconductor saturable absorber mirror assisted Kerr-Lens mode-locked Ti:sapphire laser, producing cycles in the two-cycle regime, Opt. Lett. 24, 631–633 (1999)

    Article  ADS  Google Scholar 

  351. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H.A. Haus, J.G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi: Sub-two-cycle pulses from a Kerr-Lens mode-locked Ti:sapphire laser, Opt. Lett. 24, 920–922 (1999)

    Article  ADS  Google Scholar 

  352. J.T. Seo, U. Hömmerich, H. Zong, S.B. Trivedi, S.W. Kutcher, C.C. Wang, R. J. Chen: Mid-infrared lasing from a novel optical material: Chromiumdoped Cd0.55Mn0.45Te, Phys. Stat. Sol. (a) 175, R 3 (1999)

    Article  ADS  Google Scholar 

  353. J. McKay, D. Krause, K.L. Schepler: Optimization of Cr2+:CdSe for efficient laser operation, OSA Trends Opt. Photonics 34, 218–224, H. Injeyan, U. Keller, Ch. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2000)

    Google Scholar 

  354. P.A. Champert, S.V. Popov, J.R. Taylor: Efficient lasing of Cr2+:ZnSe at 2.2. µm pumped by all-fiber-format seeded Raman source, Electron. Lett. 38, 448 (2002)

    Article  Google Scholar 

  355. T. J. Carrig, G. J. Wagner, I. T. McKinnie, W. J. Alford: Recent progress in the development of practical Cr:ZnSe lasers, paper presented at the Solid State & Diode Laser Technology Review, Albuquerque, NM (2002)

    Google Scholar 

  356. T. J. Carrig: Transition-metal-doped chalcogenide lasers, J. Electron. Mater. 31, 759–769 (July 2002)

    Article  ADS  Google Scholar 

  357. J. F. Wang, A. Omino, M. Isshiki: Bridgman growth of twin-free ZnSe single crystals, Mater. Sci. Eng. B 83, 185–191 (2001)

    Article  Google Scholar 

  358. C.S. Fang, Q.T. Gu, J.Q. Wei, Q.W. Pan, W. Shi, J.Y. Wang: Growth of ZnSe single crystals, J. Crystal Growth 209, 542–546 (2000)

    Article  ADS  Google Scholar 

  359. V. I. Levchenko, V. N. Yakimovich, L. I. Postnova, V. I. Konstantinov, V. P. Mikhailov, N. V. Kuleshov: Preparation and properties of bulk ZnSe:Cr single crystals, J. Crystal Growth 198–199, 980–983 (1999)

    Article  Google Scholar 

  360. A. Burger, J.-O. Ndap, K. Chattopadhyay, O.O. Adetunji, D.E. Zelmon, A. Burger: Thermal diffusion of Cr2+ in bulk ZnSe, J. Crystal Growth 240, 176–184 (2002)

    Article  Google Scholar 

  361. A.V. Podlipensky, V.G. Shcherbitsky, N.V. Kuleshov, V.P. Mikhailov, V. I. Levchenko, V. N. Yakimovich, L. I. Postnova, V. I. Konstantinov: Pulsed laser operation of diffusion-doped Cr2+:ZnSe, Opt. Commun. 167, 129 (1999)

    Article  ADS  Google Scholar 

  362. G.J. Wagner, T.J. Carrig, R.H. Jarman, R.H. Page, K.I. Schaffers, J.-O. Ndap, X. Ma, A. Burger: High-efficiency, broadly tunable continuous-wave Cr2+:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 427–434, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  363. I.T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, R. Page, K. Schaffers: 0.5 W efficient broadly tunable continous-wave Cr2+:ZnSe laser, OSA Trends Opt. Photonics 34, 188–193, H. Injeyan, U. Keller, Ch. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2000)

    Google Scholar 

  364. D. Findlay, R. A. Clay: Measurement of internal losses in 4-level lasers, Phys. Lett. 20, 277 (1966)

    Article  ADS  Google Scholar 

  365. V. L. Kalashnikov, E. Sorokin, I. T. Sorokina: Multipulse operation and limits of the Kerr-lens mode locking stability, IEEE J. Quantum Electron. 39, 323–336 (2003)

    Article  ADS  Google Scholar 

  366. J. A. Skidmore, B.L. Freitas, C.E. Reinhardt, E. J. Utterback, R.H. Page, M. A. Emanuel: High-power operation of InGaAsP/InP laser diode array at 1.73 µm, IEEE Photonics Technol. Lett. 9, 1334 (1997)

    Article  ADS  Google Scholar 

  367. J. T. Seo, U. Hömmerich, S. B. Trivedi, R. J. Chen, S. Kutcher: Slope efficiency and tunability of a Cr2+-doped Cd0.85Mn0.15Te mid-infrared laser, Opt. Commun. 153, 267–270 (1998)

    Article  ADS  Google Scholar 

  368. J.T. Seo, U. Hömmerich, S.B. Trivedi, R.J. Chen, S. Kutcher, C. C. Wang, H. Zong, P. R. Boyd, W. Tardiff: Spectroscopy and tunable mid-infrared lasing of a novel gain-medium: Cr2+-doped Cd0.85Mn0.15Te, Korean Phys. Society 34, 221–226 (1999)

    Google Scholar 

  369. U. Hömmerich, J.T. Seo, M. Turner, A. Bluiett, S.B. Trivedi, H. Zong, S. Kutcher, C.C. Wang, R.J. Chen: Mid-infrared laser development based on transition metal doped cadmium manganese telluride, J. Lumin. 87–89, 1143–1145 (2000)

    Article  Google Scholar 

  370. S.B. Trivedi, S.W. Kutcher, C.C. Wang, G.V. Jagannathan, U. Hömmerich, A.G. Bluiett, M. Turner, J.T. Seo, K.L. Schepler, B. Schumm, P.R. Boyd, G. Green: Transition metal doped cadmium manganese telluride: A new material for tunable mid-infrared lasing, J. Electron. Mater. 30, 728 (2001)

    Article  ADS  Google Scholar 

  371. A.G. Bluiett, U. Hömmerich, J.T. Seo, R. Shah, S.B. Trivedi, S.W. Kutcher, C.C. Wang, P.R. Boyd: Observation of lasing from Cr2+:CdTe and compositional effects in Cr2+ doped II-VI semiconductors, J. Electron. Mater. 31, 806–810 (July 2002)

    Google Scholar 

  372. J. McKay, K. L. Schepler, G. Catella: Kilohertz, 2.6 µm Cr2+:CdSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 420, M. Fejer, H. Injeyan, U. Keller (Eds.) (Opt. Soc. Am., Washington, DC 1999)

    Google Scholar 

  373. J. McKay, W. B. Roh, K. L. Schepler: Extended Mid-IR tuning of a Cr2+:CdSe laser, Opt. Soc. Am. Trends Opt. Photonics Adv. Solid-State Lasers 68, 371–373 (Opt. Soc. Am., Washington, DC 2002)

    Google Scholar 

  374. P. B. Klein, J. E. Furneaux, R. L. Henry: Laser oscillation at 3.53 µm from Fe2+ in n-InP:FeAppl. Phys. Lett. 42, 638 (1983)

    Google Scholar 

  375. J. J. Adams, C. Bibeau, R. H. Page, S. A. Payne: Tunable laser action at 4 µm from Fe:ZnSe, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 435–440, M. Fejer, H. Injeyan, U. Keller (Eds.) (Opt. Soc. Am., Washington, DC 1999)

    Google Scholar 

  376. J. J. Adams, C. Bibeau, R.H. Page, D.M. Krol, L.H. Furu, S.A. Payne: 4.0-4.5-µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material, Opt. Lett. 24, 1720 (1999)

    Article  ADS  Google Scholar 

  377. W. S. Peloach, G. J. Wagner, T. J. Carrig, W. J. Scharpf: Mid-wave ZGP OPOs pumped by a Cr:ZnSe laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 46, 670–674, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  378. I.T. McKinnie, G.J. Wagner, S. Christensen, T. Carrig, C.B. Rawle: Dual band mid-wave/long-wave ZGP OPO pumped tuned by a Cr:ZnSe laser, in Opt. Soc. Am. Trends in Optics and Photonics 73, 170–171, Conf. Lasers Electro-Optics, OSA Technical Digest, Postconf. Edition (Opt. Soc. Am., Washington, DC 2002)

    Google Scholar 

  379. W. Beall Fowler: Physics of Color Centers, W. Beall Fowler (Ed.) (Academic Press, New York 1968) Chap. 2

    Google Scholar 

  380. L. F. Mollenauer: Color center lasers, in Quantum Electronics, part B, vol. 15, C. L. Tang (Ed.) (Academic Press, New York 1979) Chap. 6

    Google Scholar 

  381. L.F. Mollenauer: in Laser Handbook Vol. 4, M. Bass (Ed.) (North-Holland, Amsterdam 1985)

    Google Scholar 

  382. L. F. Mollenauer: Colorcenter lasers, in Tunable Lasers, 2nd. edition, L. F. Mollenauer, J.C. White, C.R. Pollock (Eds.) Springer-Verlag, Berlin (1992), p. 225–275

    Google Scholar 

  383. C. R. Pollock: Optical properties of laser-active color centers, J. Lumin. 35, 65–78 (1986)

    Article  Google Scholar 

  384. C. R. Pollock: Color center lasers, in Encyclopedia of Lasers and Optical Technology, R. A. Meyers (Ed.) (Academic, San Diego 1991)

    Google Scholar 

  385. T. T. Basiev, S.B. Mirov, V.V. Osiko: Room-temperature color-center lasers, IEEE J. Quantum Electron. 24, 1052 (1988)

    Article  ADS  Google Scholar 

  386. T. T. Basiev, S.B. Mirov: Room-Temperature Tunable Color-Center Lasers, Laser Sci. Technol. Ser. 16, p. 1 (Gordon, Breach, New York 1994)

    Google Scholar 

  387. S.B. Mirov, T. Basiev: Progress in color center lasers, IEEE J. Sel. Top. Quantum Electron. 1, 22–30 (1995)

    Article  Google Scholar 

  388. B. Fritz, E. Menke: Laser effect in KCl with Fa(Li) centers, Solid-State Commun. 3, 61 (1965)

    Article  ADS  Google Scholar 

  389. L. F. Mollenauer, D. H. Olson: A broadly tunable CW laser using color centers, Appl. Phys. Lett. 24, 386 (1974)

    Article  ADS  Google Scholar 

  390. L. F. Mollenauer, D. H. Olson: Broadly tunable lasers using color centers, J. Appl. Phys. 46, 3109–3118 (1975)

    Article  ADS  Google Scholar 

  391. K.R. German: Optimization of FA(II) and FB(II) color-center lasers, J. Opt. Soc. Am. B 3, 149–157 (1986)

    ADS  Google Scholar 

  392. R. Beigang, G. Liftin, H. Welling: Frequency behavior and linewidth of CW single mode color-center lasers, Opt. Commun. 22, 269–271 (1977)

    Article  ADS  Google Scholar 

  393. C. H. Breant, T. Baer, D. Nesbitt, J. L. Hall: State-dependent hyperfine coupling of HF studied with a frequency controlled color-center laser spectrometer, in Laser Spectroscopy VI, H. P. Weber, W. Lüthy (Eds.) (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  394. H. Welling, G. Liftin, R. Beigang: Tunable infrared lasers using color centers, in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten (Eds.) (Springer, Berlin, Heidelberg 1977) p. 370–375

    Google Scholar 

  395. C. R. Pollock, J.A. Jennings, F.R. Petersen, J. S. Wells, R.E. Drullinger, E. C. Beaty, K. M. Evenson: Direct frequency measurements of transitions at 520 THz (576 nm) in iodine and 260 THz (1.15 µm) in neon, Opt. Lett. 8, 133 (1983)

    ADS  Google Scholar 

  396. R. Beigang, J. J. Wynne: Atomic Rydberg-state spectroscopy of Ca I using pulsed color-center lasers, Opt. Lett. 6, 295–297 (1981)

    Article  ADS  Google Scholar 

  397. A. S. Subdo, M. M. T. Loy, P. A. Roland, R. Beigang: High peak power FA(II) color-center laser for time-resolved infrared spectroscopy, Opt. Commun. 37, 417–420 (1981)

    Article  ADS  Google Scholar 

  398. R. Beigang: Color center laser pumped by a flashlamp-pumped dye laser, Opt. Commun. 34, 249–251 (1980)

    Article  ADS  Google Scholar 

  399. G. Liftin, R. Beigang, H. Welling: Tunable CW laser operation in FB(II) type color-center crystals, Appl. Phys. Lett. 31, 381 (1977)

    Article  ADS  Google Scholar 

  400. K. P. Koch, G. Liftin, H. Welling: Continuous-wave laser oscillation with extended tuning range in FA(II)-FB(II) color-center lasers, Opt. Lett. 4, 387 (1979)

    ADS  Google Scholar 

  401. I. Schneider, C.L. Marquardt: Tunable, CW laser action using (F2 +) centers in Li-doped KCl, Opt. Lett. 5, 214 (1980)

    ADS  Google Scholar 

  402. I. Schneider, C. L. Marquardt: Broadly tunable oscillator-amplifier system using lithium (F2 +)A centers in KCl, Opt. Lett. 10, 13–15 (1985)

    Article  ADS  Google Scholar 

  403. I. Schneider, S.C. Moss: Color-center laser continuously tunable from 1.67 to 2.46 µm, Opt. Lett. 8, 7–8 (1983)

    Article  ADS  Google Scholar 

  404. K. Möllmann, M. Schrempel: Bing Kun Yu, W. Gellermann: Subpicosecond and continuous-wave laser operation of (F2 +)Hand (F2 +)AH color-center lasers in the 2-µm range, Opt. Lett. 19, 960–962 (1994)

    ADS  Google Scholar 

  405. I. Schneider: Continuous tuning of a color-center laser between 2 and 4 µm, Opt. Lett. 7, 271 (1982)

    ADS  Google Scholar 

  406. R.W. Tkach, T. R. Gosnell, A.J. Sievers: Solid-state vibrational laser KBr:CN-, Opt. Lett. 10, 122 (1984).

    ADS  Google Scholar 

  407. T. R. Gosnell, A. J. Sievers, C. R. Pollock: Continuous-wave operation of the KBr:CN solid-state vibration laser in the 5-µm region, Opt. Lett. 10, 125 (1985)

    ADS  Google Scholar 

  408. T. R. Gosnell, R.W. Tkach, A.J. Sievers: High temperature vibrational fluorescence of CN ions in alkali halides, Solid-State Commun. 53, 419–421 (1985)

    Article  ADS  Google Scholar 

  409. W. Gellermann, F. üthy: Stable multi-line CW vibration laser near 5 µm based on FH(CN) centers in CsBr, Opt. Commun. 72, 214–218 (1989)

    Article  ADS  Google Scholar 

  410. W. Gellermann, Y. Yang, F. Lüthy: Laser operation near 5 µm of vibrationally excited F-center/CN molecule defect pairs in CsCl crystals, pumped in the visible, Opt. Commun. 57, 196–200 (1986)

    Article  ADS  Google Scholar 

  411. E.P. Chicklis, C.S. Naiman, R. C. Folweiler, D.R. Gabbe, H.P. Jenssen, A. Linz: High-efficiency room-temperature 2.06-µm laser using sensitized Ho3+:YLF, Appl. Phys. Lett. 19, 119–120 (1971)

    Article  ADS  Google Scholar 

  412. J. A. Caird, L. G. DeShazer, J. Nella: Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAlO3, IEEE J. Quantum Electron. 11, 874–881 (1975)

    Article  ADS  Google Scholar 

  413. A. A. Kaminskii, T. I. Butaeva, A. O. Ivanov, I. V. Mochalov, A. G. Petrosyan, G. I. Rogov, V. A. Fedorov: New data on stimulated emission of crystals containing Er3+ and Ho3+ ions, Sov. Tech. Phys. Lett. 2, 308–310 (1976)

    Google Scholar 

  414. E.W. Duczynski, G. Huber, V. G. Ostroumov, I.A. Shcherbakov: CW double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets, Appl. Phys. Lett. 48, 1562–1563 (1986)

    Article  ADS  Google Scholar 

  415. L. Esterowitz, R. Allen, L. Goldberg, J. F. Weller, M. Storm, I. Abella: Diodepumped 2 µm holmium laser, in Tunable Solid-State Lasers II, Springer Ser. Opt. Sci. 52 (Springer, Berlin, Heidelberg 1986) pp. 291–292

    Google Scholar 

  416. G.J. Kintz, L. Esterowitz, R. Allen: CW diode-pumped Tm3+, Ho3+:YAG 2.1 µm room-temperature laser, Electron. Lett. 23, 616 (1987)

    Article  Google Scholar 

  417. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich: Continuous-wave operation at 2.1 µm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al3O12 laser at 300 K, Opt. Lett. 12, 678–680 (1987)

    Article  ADS  Google Scholar 

  418. G. J. Kintz, R. Allen, L. Esterowitz: CW laser emission at 2.02 µm from diode-pumped Tm3+:YAG at room temperature, paper FB2, Proc. Conf. Lasers and Electro-Optics, CLEO’88 (Opt. Soc. Am., Washington, DC 1988)

    Google Scholar 

  419. B.T. McGuckin, R.T. Menzies: Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 µm, IEEE J. Quantum Electron. 28, 1025–1028 (1992)

    Article  ADS  Google Scholar 

  420. A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, H. P. Jenssen: A diode-laser-pumped tunable Ho:YLF laser in the 2 µm region, Appl. Phys. B 57, 3172–3175 (1993)

    Google Scholar 

  421. T. J. Kane, T. S. Kubo: Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG, OSA Proc. Adv. Solid-State Lasers 6, 136–139 (Opt. Soc. Am., Washington, DC 1990)

    Google Scholar 

  422. W. S. Rabinovich, S. R. Bowman, B. J. Feldman, M. J. Winings: Tunable laser pumped 3 µm Ho:YAlO3 laser, IEEE J. Quantum Electron. 27, 895–897 (1990)

    Article  ADS  Google Scholar 

  423. A.F. Umyskov, Yu. D. Zavartsev, A.I. Zagumennyi, V.V. Osiko, P.A. Studenikin: Cr3+:Yb3+:Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84-3.05 µm, Sov. J. Quantum Electron. 26, 563–564 (1996) [transl. from: Kvant. Elektron. 23, 579–580 (1996)]

    Article  ADS  Google Scholar 

  424. A. Diening, S. Kück: Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet, J. Appl. Phys. 87, 4063 (2000)

    Article  ADS  Google Scholar 

  425. E. Sorokin, I. T. Sorokina, A. Unterhuber, E. Wintner, A. I. Zagumenny, I.A. Shcherbakov, V. Carozzo, M. Tonelli: A novel CW mode-locked 2 µm Cr,Tm,Ho:YSGG:GSAG laser, paper CWM1, Conf. Lasers Electro-Optics, Techn. Digest (1998) p. 296

    Google Scholar 

  426. F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, P. Laporta: Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho:YLF and Tm-Ho:BaYF: a comparative analysis, Appl. Phys. B 75, 817–822 (2002)

    Article  ADS  Google Scholar 

  427. H. Nakajima, T. Yokozawa, T. Yamamoto, H. Hara, N. Djeu: Power optimization of 2 µm Tm,Ho:YAG laser in monolithic crystal, Jpn. J. Appl. Phys. 33, 1010–1011 (1994)

    Article  ADS  Google Scholar 

  428. C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, G.W. Turner, Ho:YAG laser pumped by 1.9-µm diode lasers, IEEE J. Quantum Electron. 31, 1603–1605 (1995)

    Article  ADS  Google Scholar 

  429. Yu. D. Zavartsev, V.V. Osiko, S.G. Semenkov, P.A. Studenikin, A. F. Umyskov: Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium-scandium-gallium garnet crystal, Sov. J. Quantum Electron. 23, 312–316 (1993) [transl. from: Kvant. Elektron. 20, 366–370 (1993)]

    Article  ADS  Google Scholar 

  430. A. M. Tabirian, H. P. Jenssen, A. Cassanho: Efficient, room temperature mid-infrared laser at 3.9 µm in Ho:BaY2F8, OSA Trends Opt. Photonics Adv. Solid-State Lasers 50, 170–176 (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  431. L.A. Pomeranz, P.A. Budni, M.L. Lemons, C.A. Miller, J.R. Mosto, T. M. Pollak, E. P. Chicklis: Power Scaling Performance of Tm:YLF and Tm:YALO Lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 458–462 (Opt. Soc. Am., Washington, DC 1999)

    Google Scholar 

  432. R. A. Hayward, W. A. Clarkson, D. C Hanna: High-power diode-pumped room-temperature Tm:YAG and intracavity-pumped Ho:YAG lasers, OSA Trends Opt. Photonics Adv. Solid-State Lasers 34, 90–94 (Opt. Soc. Am., Washington, DC 2000)

    Google Scholar 

  433. R. C Stonemann, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett. 15, 486–488 (1990)

    Article  ADS  Google Scholar 

  434. R.C. Stonemann, L. Esterowitz: Efficient 1.94-µm Tm:YALO laser, IEEE J. Sel. Topics Quantum Electron. 1, 78–80 (1995)

    Article  Google Scholar 

  435. L. Fornasiero, N. Berner, B.-M. Dicks, E. Mix, V. Peters, K. Petermann, G. Huber: Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 µm, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 450–453 (Opt. Soc. Am., Washington, DC 1999)

    Google Scholar 

  436. E. Sorokin, A.N. Alpatiev, I.T. Sorokina, A.I. Zagumennyi, I. A. Shcherbakov: Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 68, 347–350 (Opt. Soc. Am., Washington, DC 2002)

    Google Scholar 

  437. P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, I.A. Shcherbakov: GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Nd3+, Tm3+ and Er3+ ions, Quantum Electron. 25, 1162–1165 (1995)

    Article  ADS  Google Scholar 

  438. V. A. Mikhailov, Yu. D. Zavartzev, A. I. Zagumennyi, V. G. Ostroumov, P.A. Studenikin, E. Heumann, G. Huber, I.A. Shcherbakov: Tm3+:GdVO4-a new efficient medium for diode-pumped 2 µm lasers, Quantum Electron. 27, 13–14 (1997)

    Article  ADS  Google Scholar 

  439. Ch. P. Wyss, W. Lüthy, H.P. Weber, V.I. Vlasov, Yu. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov: Emission properties of a Tm3+:GdVO4 microchip laser at 1.9 µm, J. Appl. Phys. B 67, 1–4 (1998)

    Article  Google Scholar 

  440. A. I. Zagumennyi, V. A. Mikhailov, Yu. D. Zavartsev, S. A. Koutovoi, F. Zerrouk, I.A. Shcherbakov: A diode-pumped 0.6 W CW Tm:GdVO4 microchip laser, CLEO/Europe-EQEC Focus Meeting 2001, Prog. Solid-State Lasers, Techn. Digest, p. 99, paper C-PSL 129

    Google Scholar 

  441. H. Saito, S. Chaddha, R. S. F. Chang, N. Djeu: Efficient 1.94-µm Tm3+ laser in YVO4 host, Opt. Lett. 17, 189–191 (1992)

    ADS  Google Scholar 

  442. K. Ohta, H. Saito, M. Obara, N. Djeu: Characterization of a longitudinally pumped CW, room-temperature operation of Tm3+:YVO4 laser, Jpn. J. Appl. Phys. 32, 1651–1657 (1993)

    Article  ADS  Google Scholar 

  443. J. F. Pinto, L. Esterowitz, G.H. Rosenblatt: Tm3+:YLF laser continuously tunable between 2.20 and 2.46 µm Opt. Lett. 19, 883–885

    Google Scholar 

  444. G. H. Rosenblatt, J. F. Pinto, R. C. Stonemann, L. Esterowitz: Continuously tunable 2.3 µm Tm:GSGG laser, LEOS’ 93 Conf. Proc. IEEE, 689–690 (1993)

    Google Scholar 

  445. F. Heine, E. Heumann, G. Huber, K. L. Schepler: Mode locking of room-temperature CW thulium and holmium lasers, Appl. Phys. Lett. 60, 1161–1162 (1992)

    Article  ADS  Google Scholar 

  446. K. L. Schepler, B. D. Smith, F. Heine, P. A. Budni: Mode-locking of a diode-pumped Tm,Ho:YLF, OSA Proc. Adv. Solid-State Lasers 20, 257–259 (Opt. Soc. Am., Washington, DC 1994)

    Google Scholar 

  447. K. L. Vodop’yanov: Bleaching of water by intense light at the maximum of the A ∼ 3 µm absorption band, Sov. Phys. JETP 70, 114–121 (1990)

    Google Scholar 

  448. V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, S. L. Popov: Dispersion and absorption of liquid water in the infrared and radio regions, Opt. Spectrosc. 27, 430 (1969)

    ADS  Google Scholar 

  449. F. Frauchiger, W. Lüthy: Interaction of 3 µm radiation with matter, Opt. Quantum Electron. 19, 231 (1987)

    Article  Google Scholar 

  450. E.V. Zharikov, V.J. Zhekov, L.A. Kulevskii, T.M. Murina, V.V. Osiko, A.M. Prokhorov, V.D. Savel’ev, V.V. Smirnov, B.P. Starikov, M.I. Timoshechkin: Stimulated emission from Er3+-ions in yttrium aluminum garnet crystals at λ = 2.94 µm, Sov. J. Quantum Electron. 4(8), 1039–1040 (1975)

    Article  ADS  Google Scholar 

  451. V.I. Zhekov, V. A. Lobachev, T.M. Murina, A.M. Prokhorov: Efficient cross-relaxation laser emitting at λ = 2.94 µm, Sov. J. Quantum Electron. 13, 1235–1237 (1983)

    Article  ADS  Google Scholar 

  452. E. V. Zharikov, V. V. Osiko, A. M. Prokhorov, I. A. Shcherbakov: Crystals of rare-earth gallium garnets with chromium as active media for solid-state lasers, Inorg. Mat. 48, 81–94 (1984)

    Google Scholar 

  453. P. F. Moulton, J. G. Manni, G. A. Rines: Spectroscopic and laser characteristics of Er,Cr:YSGG, IEEE J. Quantum Electron. 24, 960–973 (1988)

    Article  ADS  Google Scholar 

  454. A.M. Prokhorov, A.A. Kaminskii, V.V. Osiko, M.I. Timoshechkin, E.V. Zharikov, T.I. Butaeva, S.E. Sarkisov, A. G. Petrosyan, V.A. Fedorov: Investigations of the 3 µm stimulated emission from Er3+ ions in aluminium garnets at room temperature, Phys. Stat. Sol. (a) 40, K69–K77 (1977)

    Article  ADS  Google Scholar 

  455. G. J. Kintz, R. E. Allen, L. Esterowitz: Diode-pumped 2.8-µm laser emission from Er3+:YLF at room temperature, Appl. Phys. Lett. 50, 1553 (1987)

    Article  ADS  Google Scholar 

  456. S.A. Pollack, D. Chang, N.L. Moise: Continuous wave and Q-switched in-frared erbium laser, Appl. Phys. Lett. 49, 1578–1580 (1986)

    Article  ADS  Google Scholar 

  457. F. Auzel, S. Hubert, D. Meichenin: Multifrequency room-temperature continuous diode and Ar-laser-pumped Er3+ laser emission between 2.66 and 2.85 µm, Appl. Phys. Lett. 54, 681 (1989)

    Article  ADS  Google Scholar 

  458. A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, S.E. Sarkisov: Spectroscopic properties and 3 µm stimulated emission of Er3+ ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 garnet crystal systems, Phys. Stat. Sol. (a) 71, 291 (1982)

    Article  ADS  Google Scholar 

  459. S. Hubert, D. Meichenin, B.W. Zhou, F. Auzel: Emission properties, oscillator strength and laser parameters of Er3+ in LiYF4 at 2.7 µm, J. Lumin. 50, 7 (1991)

    Article  Google Scholar 

  460. B. J. Dinerman, P. F. Moulton: 3-µm CW laser operations in erbium-doped YSGG, GGG, and YAG, Opt. Lett. 19, 1143 (1994)

    ADS  Google Scholar 

  461. H. Voss, F. Massmann: Diode-pumped Q-switched erbium lasers with short pulse duration, OSA Trends Opt. Photonics Adv. Solid-State Lasers 10, 217–221, C. R. Pollock, W.R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997)

    Google Scholar 

  462. R. Waarts, D. Nam, S.H. Sanders, J. Harrison, B. J. Dinerman: Two dimensional Er:YSGG microlaser array pumped with a monolithic two-dimensional laser diode array, Opt. Lett. 19, 1738 (1994)

    Article  ADS  Google Scholar 

  463. H. J. Eichler, J. Findeisen, B. Liu, A. A. Kaminskii, A. V. Butachin, P. Peuser: Highly efficient diode-pumped 3-µm Er3+:BaY2F8 laser, IEEE J. Sel. Topics Quantum Electron. 3, 90 (1997)

    Article  Google Scholar 

  464. R.H. Page, R.A. Bartels, R. J. Beach, S.B. Sutton, L.H. Furu, J.E. LaSala: 1W composite-slab Er:YAG laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 10, 214–216, C. R. Pollock, W. R. Bosenberg (Eds.) (Opt. Soc. Am., Washington, DC 1997)

    Google Scholar 

  465. D. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields: Diode pumped 1W continuous-wave Er:YAG 3 µm laser, Opt. Lett. 24, N6 (1999)

    Google Scholar 

  466. J. F. Pinto, G. F. Rosenblatt, L. Esterowitz: Continuous-wave laser action in Er3+:YLF at 3.41 µm, Electron. Lett. 30, 1596 (1994)

    Article  Google Scholar 

  467. S.R. Bowman, S.K. Searles, N.W. Jenkins, S.B. Qadri, E.F. Skelton, J. Ganem: Diode pumped room temperature mid-infrared erbium laser, OSA Trends Opt. Photonics Adv. Solid-State Lasers 50, 154–156 (Opt. Soc. Am., Washington, DC 2001)

    Google Scholar 

  468. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, L.I. Isaenko: Room-temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 µm and KPb2Cl5:Dy3+ laser action at 2.43 µm, OSA Trends Opt. Photonics Adv. Solid-State Lasers 26, 441–449, S. Payne, C. Marshall (Eds.) (Opt. Soc. Am., Washington, DC 1999)

    Google Scholar 

  469. A. Dergachev, P. Moulton: Tunable CW Er:YLF diode-pumped laser, in Advanced Solid-State Photonics, OSA Technical Digest, 5-7 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sorokina, I.T. (2003). Crystalline Mid-Infrared Lasers. In: Sorokina, I.T., Vodopyanov, K.L. (eds) Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36491-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36491-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00621-3

  • Online ISBN: 978-3-540-36491-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics