Advertisement

Generating and Testing the Modified Halton Sequences

  • Emanouil I. Atanassov
  • Mariya K. Durchova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)

Abstract

The Halton sequences are one of the most popular low-sdiscrepancy sequences, used for calculating multi-dimensional integrals or in quasi-Monte Carlo simulations. Various techniques for their randomization exist. One of the authors proved that for one such modification an estimate of the discrepancy with a very small constant before the leading term can be proved. In this paper we describe an efficient algorithm for generating these sequences on computers and show timing results, demonstrating the efficiency of the algorithm. We also compare the integration error of these sequences with that of the classical Halton sequences on families of functions widely used for such benchmarking purposes. The results demonstrate that the modified Halton sequences can be used successfully in quasi-Monte Carlo methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, E.I.: On the discrepancy of the Halton sequences. Mathematica Balkanika (accepted for publication).Google Scholar
  2. 2.
    Bratley, P., Fox, B.: Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Transactions on Mathematical Software (TOMS), Vol. 14, 1, ACM Press, New York, NY, USA (1988) 88–100.Google Scholar
  3. 3.
    Faure, H.: Discrépance de suites associées à un système de numéracion (en dimension un). H. Bull. Soc. Math. France, 109 (1981) 143–182.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. math. 2 (1960) 84–90. ErrorCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lecot, C.: An algorithm for generating low discrepancy sequences on vector computers. Parallel Computing, 11 (1989) 113–116.zbMATHCrossRefGoogle Scholar
  6. 6.
    Ökten, G., Srinivasan, A.: Parallel Quasi-Monte Carlo Methods on a Heterogeneous Cluster. In: Fang, K. T., Hickernell, F. J., and Niederreiter, H. (eds.): Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer-Verlag, Berlin (2002) 406–421Google Scholar
  7. 7.
    Schmidt, W. Ch., Uhl, A.: Tehniques for parallel quasi-Monte Carlo integration with digital sequences and associated problems. Mathematics and Computers in Simulation, Vol. 55, 1-3, North-Holland (2001) 249–257.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Emanouil I. Atanassov
    • 1
  • Mariya K. Durchova
    • 1
  1. 1.Central Laboratory for Parallel Processing - BASSofia

Personalised recommendations