Geometry of Polynomials and Numerical Analysis

  • Blagovest Sendov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)


The purpose of this paper is to demonstrate the potential of a fruitful collaboration between Numerical Analysis and Geometry of Polynomials. This is natural as the polynomials are still a very important instrument in Numerical Analysis, regardless many new instruments as splines, wavelets and others. On the other hand, the Numerical Analysis through computers is a powerful instrument for experimentation in almost every mathematical discipline.

Key words

Geometry of polynomials Gauss-Lucas Theorem zeros of polynomials critical points Smale’s Conjecture Sendov’s Conjecture 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aziz, A.: On the zeros of a polynomial and its derivative, Bull. Austr. Math. Soc. 31, # 4 (1985), 245–255.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Beardon, A.F., D. Minda and T.W. Ng: Smale’s mean value conjecture and the hyperbolic metric, Mathematische Annalen (to appear).Google Scholar
  3. 3.
    Bojanov, B.D., Q.I. Rahman and J. Szynal: On a conjecture of Sendov about the critical points of a polynomial, Math. Z. 190(1985), 281–285.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borcea, J.: On the Sendov conjecture for polynomials with at most six distinct zeros, J. Math. Anal. Appl. 200, #1 (1996), 182–206.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borcea, J.: The Sendov conjecture for polynomials with at most seven distinct roots, Analysis 16 (1996), 137–159.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Brannan, D. A.: On a conjecture of Ilieff, Math. Proc. Cambridge Phil. Soc. 64 (1968), 83–85.Google Scholar
  7. 7.
    Brown, J. E.: On the Ilieff-Sendov conjecture, Pacific J. Math. 135 (1988), 223–232.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Brown, J.E.: On the Sendov conjecture for sixth degree polynomials, Proc. Amer. Math. Soc. 113, # 4 (1991),939–946.Google Scholar
  9. 9.
    Brown, J. E.: A proof of the Sendov conjecture for polynomials of degree seven. Complex Variables Theory Appl. 33, # 1-4 (1997), 75–95.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Brown, J. E.: On the Sendov’s Conjecture for polynomials with real critical points, Contemporary Mathematics 252 (1999), 49–62.Google Scholar
  11. 11.
    Brown, J.E. and G. Xiang: Proof of the Sendov conjecture for polynomials of degree at most eight, J. Math. Anal. Appl. 232, # 2 (1999), 272–292.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cohen, G. L. and G. H. Smith: A proof of Iliev’s conjecture for polynomials with four zeros, Elemente d. Math. 43 (1988), 18–21.zbMATHGoogle Scholar
  13. 13.
    Cohen, G.L. and G.H. Smith: A simple verification of Iliev’s conjecture for polynomials with three zeros, Amer. Math. Mountly 95 (1988), 734–737.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gacs, G.: On polynomials whose zeros are in the unit disk, J. Math. Anal. Appl. 36 (1971), 627–637.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Goodman, A. G., Q.I. Rahman and J. Ratti: On the zeros of a polynomial and its derivative, Proc. Amer. Math. Soc. 21 (1969), 273–274.Google Scholar
  16. 16.
    Hayman, W. K.: Research Problems in Function Theory, Althlone Press, London, 1967.zbMATHGoogle Scholar
  17. 17.
    Joyal, A.: On the zeros of a polynomial and its derivative, J. Math. Anal. Appl. 25 (1969), 315–317.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kakeya, S.: On zeros of polynomial and its derivative, Tôhoku Math. J. 11 (1917), 5–16.zbMATHGoogle Scholar
  19. 19.
    Kumar, S. and B.G. Shenoy: On some counterexamples for a conjecture in geometry of polynomials, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. # 12 (1991), 47–51.MathSciNetGoogle Scholar
  20. 20.
    Kumar, S. and B.G. Shenoy: On the Sendov-Ilie. conjecture for polynomials with at most five zeros, J. Math. Anal. Appl. 171 (1992), 595–600.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lucas, F.: Géométrie des polynômes, J. École Polytech. (1) 46 (1879), 1–33.Google Scholar
  22. 22.
    Marden, M.: Geometry of Polynomials, 2nd edition, Math. Surveys Monographs, 3, Amer. Math. Soc., Providence, RI, 1966.Google Scholar
  23. 23.
    Meir, A. and A. Sharma: On Ilieff’s conjecture, Pacific J. Math. 31 (1969), 459–467.zbMATHMathSciNetGoogle Scholar
  24. 24.
    Miller, M. J.: Maximal polynomials and the Ilieff-Sendov conjecture, Trans. Amer. Math. Soc. 321 (1990), 285–303.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Phelps, D. and R.S. Rodriguez: Some properties of extremal polynomials for the Ilieff conjecture, Kodai Math. Sem. Rep. 24 (1972), 172–175.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rubinstein, Z.: On a problem of Ilieff, Pacific J. Math. 26 (1968), 159–161.zbMATHMathSciNetGoogle Scholar
  27. 27.
    Saff, E.B. and J.B. Twomey: A note on the location of critical points of polynomials, Proc. Amer. Math. Soc. 27, # 2 (1971), 303–308.Google Scholar
  28. 28.
    Schmeisser, G.: Bemerkungen zu einer Vermutung von Ilieff, Math. Z. 111 (1969), 121–125.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schmeisser, G.: The Conjectures of Sendov and Smale, Approximation Theory (B. Bojanov, Ed.), DARBA, Sofia, 2002, 353–369.Google Scholar
  30. 30.
    Sendov, BL.: Hausdor. Geometry of Polynomials, East Journal on Approximation, 7 # 2 (2001), 1–56.MathSciNetGoogle Scholar
  31. 31.
    Smale, S.: The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4 (1981), 1–36.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Tischler, D: Critical points and values of complex ploynomials, J. of Complexity 5 (1989), 438–456.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Blagovest Sendov
    • 1
  1. 1.Central Laboratory for Parallel ProcessingBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations