Advertisement

On the Postprocessing Technique for Eigenvalue Problems

  • Andrey B. Andreev
  • Milena R. Racheva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)

Abstract

We present a new strategy of accelerating the convergence rate for the finite element solutions of the large class of linear eigenvalue problems of order 2m. The proposed algorithms have the superconvergence properties of the eigenvalues, as well as of the eigenfunctions. This improvement is obtained at a small computational cost. Solving a more simple additional problem, we get good finite element approximations on the coarse mesh. Different ways for calculating the postprocessed eigenfunctions are considered. The case where the spectral parameter appears linearly in the boundary conditions is discussed. The numerical examples, presented here, confirm the theoretical results and show the efficiency of the postprocessing method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. New York Academic Press (1975)zbMATHGoogle Scholar
  2. 2.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Amsterdam New York Oxford (1978)Google Scholar
  3. 3.
    Pierce, J.G., Varga, R.S.: Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: Improved error bounds for eigenfunctions. Numer Math. 19 (1972) 155–169.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Babuška, I., Osborn, J.: Eigenvalue Problems. Handbook of Numer. Anal., Vol.II, North-Holland, Amsterdam (1991)Google Scholar
  5. 5.
    Chatelin, F.: The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev. 23 (1981) 495–522.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Rektorys, K.: Variational Methods in Mathematics. Science and Engineering SNTL-Publishers in Technical Literature, Prague (1980)Google Scholar
  7. 7.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood, Cliffs, NJ (1973)zbMATHGoogle Scholar
  8. 8.
    Grisvard, P.: Singularities in Boundary Value Problems. Masson Springer-Verlag (1992)Google Scholar
  9. 9.
    Brener, S.C., Scott, L.R.: The Mathematical Theory of Finite Elelment Methods. Texts in Appl. Math., Springer-Verlag (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Andrey B. Andreev
    • 1
  • Milena R. Racheva
    • 1
  1. 1.Technical UniversityGabrovoBulgaria

Personalised recommendations