Advertisement

Variable-Coefficient Difference Schemes for Quasilinear Evolution Problems

  • Rita Meyer-Spasche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)

Abstract

We review several integration methods leading to variable- coefficient schemes and/or to exact schemes for ODEs (functional fitting; Principle of Coherence). Conditions for obtaining coefficients that are independent of the time t and of the time step τ are investigated. It is shown that some of the discussed schemes lead to efficient difference schemes for problems from applications, in particular for highly oscillatory ODEs and for parabolic equations with blow-up solutions.

Keywords

Collocation Method Trapezoidal Rule Error Expansion Apparent Singularity Collocation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Denk (1993): A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Appl. Num. Math. 13, 57-67; see also Report TUM-M9413, 35 pagesGoogle Scholar
  2. 2.
    K. Dekker, J.G. Verwer (1984): Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, Amsterdam: North Holland Publ.zbMATHGoogle Scholar
  3. 3.
    M.J. Gander, R. Meyer-Spasche: ‘An Introduction to Numerical Integrators Preserving Physical Properties’, chap.5 in [10]Google Scholar
  4. 4.
    J. Hersch (1958): Contribution à la méthode des équations aux différences. Z. Angew. Math. Phys. 2, 129–180MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Hairer, S.P. Nørsett, G. Wanner: Solving Ordinary Differential Equations, vol. I, 2nd ed., 1992; vol. II, 1991, Springer VerlagGoogle Scholar
  6. 6.
    M.N. Le Roux (1994): Semidiscretization in time of nonlinear parabolic equations with blowup of the solution, SIAM J. Numer. Anal. 31, 170–195zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M.N. Le Roux et al. (1992): Simulation of a coupled dynamic system of temperature and density in a fusion plasma, Phys. Scripta 46, 457–462CrossRefGoogle Scholar
  8. 8.
    R. Meyer-Spasche: ‘Difference schemes of optimum degree of implicitness for a family of simple ODEs with blow-up solutions’ JCAM 97 (1998), 137–152zbMATHMathSciNetGoogle Scholar
  9. 9.
    R. Meyer-Spasche, D. Düchs (1997): A general method for obtaining unconventional and nonstandard difference schemes. Dyn. Cont. Discr. Imp. Sys. 3, 453–467zbMATHGoogle Scholar
  10. 10.
    R.E. Mickens (ed.): ‘Applications of Nonstandard Finite Difference Schemes’, World Scientific, Singapore, 2000zbMATHGoogle Scholar
  11. 11.
    K. Ozawa (2001): ‘Functional fitting Runge-Kutta method with variable coefficients’, Jap J Ind Appl Math 18 107–130zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Vanden Berghe, L. Gr. Ixaru, H. De Meyer (2001): Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods, JCAM 132, 95–105zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rita Meyer-Spasche
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM-AssociationGarchingGermany

Personalised recommendations