Two Approaches to the Finite Element Analysis of the Stiffened Plates

  • Andrey B. Andreev
  • Jordan T. Maximov
  • Milena R. Racheva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)


The goal of this study is to investigate and to compare two finite element approaches for presenting the stiffeners of the rectangular bending plates. The first approach is when the stiffeness and mass matrices are obtained by superpositioning the plate and the beam elements. The model of the second one is realized only by the plate finite elements, but we give an account of the different stiffeness of the stiffeners by means of elements with different thickness. The plates are subjected to a transversal dynamic load. We consider the corresponding variational forms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreev, A.B., Maximov, J.T., Racheva, M.R.: Finite element method for plates with dynamic loads. In: Margenov, S., Wasniewski, J., and Yalamov, P. (eds.): Large-Scale Scientific Computing. Lecture Notes in Computer Science, Vol. 2179, Springer-Verlag (2001) 445–453.CrossRefGoogle Scholar
  2. 2.
    Argyris, J., Mlejnek, H.P.: Finite Element Methods. Friedr. Vieweg & Sohn Braunschweig/Wiesbaden (1986)Google Scholar
  3. 3.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Amsterdam (1978)Google Scholar
  4. 4.
    Mukherjee, A., Mikhopadhyay, M.: Finite element free vibration analysis of stiffened plates. The Aeronautical Journal (1986) 267–273.Google Scholar
  5. 5.
    Mikhopadhyay, M.: Vibration and stability analysis of stiffened plates by semianalytic finite difference method, Part I: Consideration of bending displacements only. J. of Sounds and Vibration, Vol. 130, 1 (1989) 27–39.CrossRefGoogle Scholar
  6. 6.
    Raviart, P.A., Thomas, J.-M.: Introduction a l’Analyse Numerique des Equations aux Derivées Partielles. Masson Paris (1988)Google Scholar
  7. 7.
    Szilard, R.: Theory of Plates. Prentice Hall New York (1975)Google Scholar
  8. 8.
    Timoshenko, S.P., Young, D.H., Weaver, W.: Vibration Problems in Engineering. John Wiley & Sons, New York (1977)Google Scholar
  9. 9.
    Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer (1997)Google Scholar
  10. 10.
    Wah, T.: Vibration of Stiffened Plates. Aero Quarterly XV (1964) 285–298.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Andrey B. Andreev
    • 1
  • Jordan T. Maximov
    • 1
  • Milena R. Racheva
    • 1
  1. 1.Technical UniversityGabrovoBulgaria

Personalised recommendations