A Comparison of Decision Making Criteria and Optimization Methods for Active Robotic Sensing

  • Lyudmila Mihaylova
  • Tine Lefebvre
  • Herman Bruyninckx
  • Klaas Gadeyne
  • Joris De Schutter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)


This work presents a comparison of decision making criteria and optimization methods for active sensing in robotics. Active sensing incorporates the following aspects: (i ) where to position sensors, and (ii ) how to make decisions for next actions, in order to maximize information gain and minimize costs. We concentrate on the second aspect: “Where should the robot move at the next time step?”. Pros and cons of the most often used statistical decision making strategies are discussed. Simulation results from a new multisine approach for active sensing of a nonholonomic mobile robot are given.


Mobile Robot Information Gain Relative Entropy Markov Decision Process Task Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geeter, J. D., De Schutter, J., Bruyninckx, H., Brussel, H. V., and Decrton, M.: Tolerance-Weighted L-optimal Experiment Design: a New Approach to Task-Directed Sensing. Advanced Robotics, Vol. 13, no.4 (1999) 401–416.CrossRefGoogle Scholar
  2. 2.
    Roy, N., Burgard, W., Fox, D., and Thrun, S.: Coastal Navigation-Mobile Robot Navigation with Uncertainty in Dynamic Environments. Proc. of ICRA (1999)Google Scholar
  3. 3.
    Cassandra, A., Kaelbling, L., and Kurien, J.: Acting under Uncertainty: Discrete Bayesian Models for Mobile Robot Navigation. Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (1996)Google Scholar
  4. 4.
    DeSouza, G. N. and Kak, A.: Vision for Mobile Robot Navigation: A Survey. IEEE Trans. on Pattern Analysis and Machine Intel., Vol. 24, no. 2 (2002) 237–267.CrossRefGoogle Scholar
  5. 5.
    Denzler, J. and Brown, C.: Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, (2002) 145–157.CrossRefGoogle Scholar
  6. 6.
    Sutton, R. and Barto, A.: Reinforcement Learning, An introduction. MIT (1998)Google Scholar
  7. 7.
    Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking. IEEE Trans. on Signal Proc., Vol. 50, no. 2 (2002) 174–188.Google Scholar
  8. 8.
    Bar-Shalom, Y. and Li, X.: Estimation and Tracking: Principles, Techniques and Software. Artech House (1993)Google Scholar
  9. 9.
    Laumond, J.-P.: Robot Motion Planning and Control. Guidelines in Nonholonomic Motion Planning for Mobile Robots, by Laumond, J.-P, Sekhavat, S., and Lamiraux, F., available at∼jpl/book.html: Springer-Verlag (1998)
  10. 10.
    Brock, O. and Khatib, O.: Elastic Strips: A Framework for Integrated Planning and Execution. Proc. of 1999 Int. Symp. of Experim. Robotics, (1999) 245–254.Google Scholar
  11. 11.
    Fisher, R.: On the Mathematical Foundations of Theoretical Statistics. Phylosophical Trans. of the Royal Society of London, Series A, Vol. 222 (1922) 309–368.CrossRefGoogle Scholar
  12. 12.
    Fedorov, V.: Theory of Optimal Experiments. Academic press, New York ed. (1972)Google Scholar
  13. 13.
    Shannon, C.: A Mathematical Theory of Communication, I and II. The Bell System Technical Journal, Vol. 27 (1948) 379–423 and 623-656.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kullback, S.: On Information and Sufficiency. Annals of mathematical Statistics, Vol. 22 (1951) 79–86.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mihaylova, L., De Schutter, J., and Bruyninckx, H.: A Multisine Approach for Trajectory Optimization Based on Information Gain. Proc. of IROS Conf. (2002)Google Scholar
  16. 16.
    Julier, S., Uhlman, J., and Durrant-Whyte, H.: A New Method for the Transformation of Means and Covariances in Filters and Estimators. IEEE Trans. on AC, Vol. 45, no. 3 (2000) 477–482.zbMATHGoogle Scholar
  17. 18.
    Swevers, J., Ganseman, C., Tukel, D., De Schutter, J., and Brussel, H. V.: Optimal Robot Excitation and Identification. IEEE Trans. on AC, Vol. 13, no. 5 (1997) 730–740.Google Scholar
  18. 19.
    Bellman, R.: Dynamic Programming. New Jersey: Princeton Univ. Press (1957)Google Scholar
  19. 20.
    Howard, R. A.: Dynamic Programming and Markov Processes. MIT Press (1960)Google Scholar
  20. 21.
    Schweitzer, P. and Seidmann, A.: Generalized Polynomial Approximations in Markovian Decision Processes. J. of MA and Appl., Vol. 110 (1985) 568–582.zbMATHMathSciNetGoogle Scholar
  21. 22.
    Boutilier, C., Dean, T., and Hanks, S.: Decision-Theoretic Planning: Structural Assumptions and Computational Leverage. J. of AI Research, Vol. 11 (1999) 1–94.zbMATHMathSciNetGoogle Scholar
  22. 23.
    Lovenjoy, W. S.: A Survey of Algorithmic Methods for Partially Observed Markov Decision Processes. Annals of Operations Research, Vol. 18 (1991) 47–66.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Lyudmila Mihaylova
    • 1
  • Tine Lefebvre
    • 1
  • Herman Bruyninckx
    • 1
  • Klaas Gadeyne
    • 1
  • Joris De Schutter
    • 1
  1. 1.Katholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations