Advertisement

Evaluation of Crisis, Reversibility, Alert Management for Constrained Dynamical Systems Using Impulse Dynamical Systems

  • Patrick Saint-Pierre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)

Abstract

Considering constrained dynamical systems characterized by a differential inclusion x′ ∈ F(x), we are interested in studying the situation where, for various reasons, the state leaves the constrain domain K either because the initial position does not belong to the Viability Kernel of K for F or it belongs to a “sustainable or tolerable” but not “comfortable” domain. This question appears in numerous models in Social Sciences or in Genetics as well as for controlling security in Automatics and Robotics, like Aircraft landing, rolling and taking off After recalling basic concepts in Viability Theory and using hybrid calculus, we show how to evaluate and manage crisis in general cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.-P.: Viability Theory. Birkhäuser, Boston, Basel, Berlin (1991)Google Scholar
  2. 2.
    Aubin J.-P.: Impulse Differential Inclusions and Hybrid Systems: A Viability Approach. Lecture Notes, University of California at Berkeley (1999)Google Scholar
  3. 3.
    Aubin J.-P., Frankowska, H.: Set-Valued Analysis. (1990)Google Scholar
  4. 4.
    Bayen, A., Crück, E., Tomlin, C.: Guaranteed Overapproximations of Unsafe Sets for Continuous and Hybrid Systems: Solving the Hamilton-Jacobi Equation Using Viability Techniques. LNCS, Vol. 2289, Springer (2002)Google Scholar
  5. 5.
    Bensoussan, A., Menaldi: Hybrid Control and Dynamic Programming, Dynamics of Continuous. Discrete and Impulse Syst., 3 (1997) 395–442.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cardaliaguet P., Quincampoix, M., Saint-Pierre, P.: Set-valued Numerical Methods for Optimal Control and Differential Games. In: Stochastic and Differential Games. Theory and Numerical Methods, Annals of the Intern. Soc. of Dynamical Games, Birkhäuser (1999) 177–247.Google Scholar
  7. 7.
    Crück, E.: Problémes de cible sous contrainte d'état pour des systèmes non linéaires avec sauts d'état. C.R.A.S. Paris, t.333 Série I (2001) 403–408.Google Scholar
  8. 8.
    Crück, E.: Thèse en préparation. (2002)Google Scholar
  9. 9.
    Dordan, O.: Analyse qualitative, Masson (1995)Google Scholar
  10. 10.
    Doyen, L., Saint-Pierre, P.: Scale of Viability and Minimal Time of Crisis, SetValued Analysis, 5 (1997) 227–246.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Frankowska, H.: Lower Semicontinuous Solutions to Hamilton-Jacobi-Bellman Equations. Proc. of 30th CDC Conference, IEEE, Brighton (1991)Google Scholar
  12. 12.
    Goodwin, R.M.: A Growth Cycle. In: Feinstein (ed.) Socialism, Capitalism and Economic Growth. (1967)Google Scholar
  13. 13.
    Leitmann, G.: Guaranteed Asymptotic Stability for a Class of Uncertain Linear Dynamical Systems. J. of Optim. Theory & Appl., 27(1) (1979)Google Scholar
  14. 14.
    Quincampoix, M.: Differential Inclusions and Target Problems. SIAM J. Control and Optimization, 30 (1992) 324–335.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Quincampoix, M., Veliov V.: Viability with a Target: Theory and Applications. Applic. of math. in engineering, Heron Press (1998) 47–54.Google Scholar
  16. 16.
    Saint-Pierre, P.: Approximation of the Viability Kernel. Applied Mathematics & Optimization, 29 (1994) 187–209.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Saint-Pierre, P.: Hybrid Kernels and Capture Basins for Impulse Constrained Systems. Proceedings of Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, 2289, Springer (2002)Google Scholar
  18. 18.
    Seube, N.: Robust Stabilization of Uncertain Systems. Journal of Math. Analysis and Applications, (1995) 452–466.Google Scholar
  19. 19.
    Sastry, S.: Non Linear Systems. Analysis, Stability and Control. Springer-Verlag (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Patrick Saint-Pierre
    • 1
  1. 1.Centre de Recherche ViabilitéJeux, Contrôle Université Paris IXDauphine

Personalised recommendations