On a Two-Level Parallel MIC(0) Preconditioning of Crouzeix-Raviart Non-conforming FEM Systems

  • Raytcho D. Lazarov
  • Svetozar D. Margenov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)


In this paper we analyze a two-level preconditioner for finite element systems arising in approximations of second order elliptic boundary value problems by Crouzeix-Raviart non-conforming triangular linear elements. This study is focused on the efficient implementation of the modified incomplete LU factorization MIC(0) as a preconditioner in the PCG iterative method for the linear algebraic system. A special attention is given to the implementation of the method as a scalable parallel algorithm.

Key words

non-conforming FEM preconditioning parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbogast, T. and Chen, Z.: On the Implementation of Mixed Methods as Nonconforming Methods for Second Order Elliptic Problems. Math. Comp, 64 (1995) 943–972.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, D.N. and Brezzi, F.: Mixed and Nonconforming Finite Element Methods: Implementation, Postprocessing and Error Estimates. RAIRO,Model. Math. Anal. Numer., 19 (1985) 7–32.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Axelsson, O., Laayyonni, L., Margenov, S.: On Multilevel Preconditioners Which Are Optimal with Respect to Both Problem and Discretization Parameters. SIAM J. Matr. Anal. Appl. (submitted).Google Scholar
  4. 4.
    Blaheta, R.: Displacement Decomposition - Incomplete Factorization Preconditioning Techniques for Linear Elasticity Problems. Numer. Lin. Alg. Appl., 1 (1994) 107–126.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bencheva, G., Margenov, S.: Parallel Incomplete Factorization Preconditioning of Rotated Linear FEM Systems. Computer & Mathematics with Applications (2002) (submitted).Google Scholar
  6. 6.
    Chen, Z.: Analysis of Mixed Methods Using Conforming and Nonconforming Finite Element Methods. RAIRO, Math. Model. Numer. Anal., 27 (1993) 9–34.zbMATHGoogle Scholar
  7. 7.
    Chen, Z.: Equivalence between Multigrid Algorithms for Mixed and Nonconformning Methods for Second Order Elliptic Problems. East-West J. Numer. Math., 4 (1996) 1–33.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, Z., Ewing, R.E., Kuznetsov, Yu.A., Lazarov, R.D., and Maliassov, S.: Multilevel Preconditioners for Mixed Methods for Second Order Elliptic Problems. Numer. Lin. Alg. with Appl., 3(5) (1996) 427–453.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, Z., Ewing, R.E., and Lazarov, R.D.: Domain Decomposition Algorithms for Mixed Methods for Second Order Elliptic Problems. Math. Comp., 65(214) (1996) 467–490.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gustafsson, I., Lindskog, G.: On Parallel Solution of Linear Elasticity Problems: Part I: Theory. Numer. Lin. Alg. Appl., 5 (1998) 123–139.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Saad, Y., Schultz, M.H.: Data Communication in Parallel Architectures. Parallel Comput., 11 (1989) 131–150.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Raytcho D. Lazarov
    • 1
  • Svetozar D. Margenov
    • 2
  1. 1.Department of MathematicsTexas A& M UniversityTXUSA
  2. 2.Central Laboratory of Parallel ProcessingBulgarian Academy of SciencesBulgaria

Personalised recommendations