On a Multigrid Eigensolver for Linear Elasticity Problems

  • Maxim Larin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2542)


In the early eighties the direct application of a multigrid technique for solving the partial eigenvalue problem of computing few of the smallest eigenvalues and their corresponding eigenvectors of a differential operator was proposed by Brandt, McCormick and Ruge [1]. In the present paper an experimental study of the method for model linear elasticity problems is carried out. Based on these results we give some practical advices for a good choice of multigrid-related parameters.


Eigenvalue Problem Coarse Grid Multigrid Method Coarse Level Linear Elasticity Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, A., McCormick, S. and Ruge, J.: Multigrid Methods for Differential Eigenproblems. SIAM J. Sci. Stat. Comput., 4(2) (1983) 244–260.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hackbusch, W.: Multigrid Methods and Applications. Springer-Verlag, Berlin-Heidelberg-New York (1985)Google Scholar
  3. 3.
    Knyazev, A. V.: Preconditioned Eigensolvers-an Oxymoron? Electronic Transaction on Numerical Analysis, Vol. 7 (1998) 104–123.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Lur'e, A. I.: Theory of Elasticity. Moscow, Nauka (1970)Google Scholar
  5. 5.
    Parlett, B.: The Symmetric Eigenvalue Problem. Prentice-Hall, Inc. (1980)Google Scholar
  6. 6.
    Trottenberg, U., Oosterlee, C. and Schüller, A.: Multigrid. Academic Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Maxim Larin
    • 1
  1. 1.Rheinisch-Wesfälische Technische Hochschule AachenInstitut für Geometrie und Praktische MathematikAachenGermany

Personalised recommendations