Skip to main content

A Monte Carlo Approach for Finding More than One Eigenpair

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2542))

Included in the following conference series:

Abstract

The Monte Carlo method has been successfully used for computing the extreme (largest and smallest in magnitude) eigenvalues of matrices. In this paper we study computing eigenvectors as well with the Monte Carlo approach. We propose and study a Monte Carlo method based on applying the ergodic theorem and compare the results with those produced by a Monte Carlo version of the power method. We also study the problem of computing more than one eigenpair combining our Monte Carlo method and deflation techniques.

Supported, in part, by the U.S. Army Research Office under Contract # DAAD19-01-1-0675

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burden, R. and Faires, J. D.: Numerical Anaysis. PWS Publ. Company, Boston (1997)

    Google Scholar 

  2. Caflisch, R. E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7 (1998) 1–49.

    Article  MathSciNet  Google Scholar 

  3. Dimov, I. and Karaivanova, A.: Parallel computations of eigenvalues based on a Monte Carlo approach. Journal of Monte Carlo Methods and Applications, Vol. 4,.1 (1998) 33–52.

    Article  MATH  MathSciNet  Google Scholar 

  4. Dimov, I. and Karaivanova, A.: A Power Method with Monte Carlo iterations. In: Iliev, O., Kaschiev, M., Margenov, S., Sendov, Bl., Vassilevski, P. (eds.): Recent Advances in Numerical Methods and Applications II. World Scientific, Singapore (1999) 239–247.

    Google Scholar 

  5. Feller, W.: An introduction to probability theory and its applications. Vol. 1,Wiley, New York (1968)

    MATH  Google Scholar 

  6. Hager, William W.: Applied Numerical Linear Algebra. Prentice Hall, London (1989)

    Google Scholar 

  7. Hammersley, J. M. and Handscomb, D. C.: Monte Carlo Methods. Methuen, London (1964)

    MATH  Google Scholar 

  8. Mascagni, M. and Karaivanova, A.: Matrix Computations Using Quasirandom Sequences. In: L. Vulkov, Waśniewski, J., Yalamov, P. (eds.): Numerical Analysis and its Applications. Lecture Notes in Computer Science, Vol. 1988, Springer-Verlag (2001) 552–559.

    Chapter  Google Scholar 

  9. Mascagni, M. and Karaivanova, A.: A Parallel Quasi-Monte Carlo Method for Computing Extremal Eigenvalues. Monte Carlo and Quasi-Monte Carlo Methods 2000, Lecture Notes in Statistics, Springer-Verlag (2002) 369–380.

    Google Scholar 

  10. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  11. Nightingale, M. P., Umrigar, C. J.: Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics. In: Ferguson, D. M., Siepmann, J. Ilja, and Truhlar, D. G. (eds.): Monte Carlo Methods in Chemistry. Advances in Chemical Physics, Vol. 105, Wiley, NY, in press.

    Google Scholar 

  12. Soboĺ, I. M.: Monte Carlo numerical methods. Nauka, Moscow (1973)

    Google Scholar 

  13. Srinivasan, A., Mascagni, M.: Monte Carlo Techniques for Estimating the Fiedler Vector in Graph Applications. Lecture Notes in Computer Sccience, Vol. 2330, 2, Springer-Verlag (2002) 635–645.

    Google Scholar 

  14. Vladimirov, V. S.: On the application of the Monte Carlo method to the finding of the least eigenvalue, and the corresponding eigenfunction of a linear integral equation. in Russian: Teoriya Veroyatnostej i Yeye Primenenie, 1, No 1 (1956) 113–130.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mascagni, M., Karaivanova, A. (2003). A Monte Carlo Approach for Finding More than One Eigenpair. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds) Numerical Methods and Applications. NMA 2002. Lecture Notes in Computer Science, vol 2542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36487-0_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-36487-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00608-4

  • Online ISBN: 978-3-540-36487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics