Skip to main content

Multiscale Modeling of Alternative Splicing Regulation

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2602))

Included in the following conference series:

Abstract

Alternative plicing is a key process in post-transcriptional regulation, by which several kind of mature RNA can be obtained from the ame premessenger RNA. Using a constraint programming approach, we model the alternative plicing regulation at different scales (single site vs. multiple sites), thus exploiting different types of available experimental data.

Part of this work wa done within the ARC INRIA “Process Calculi and Biology of Molecular Networks ”,http://contraintes.inria.fr/cpbio

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, O., and Gouzé J.-L.: Transient behavior of biological models a a tool of qualitative validation-Application to the Droop model and to a N-P-Z model. J.Biol.Syst, 4(3)(1996)303–314 80

    Article  Google Scholar 

  2. Bockmayr, A., Courtois, A.: Modeling biological items in hybrid concurrent constraint programming (Abstract). In 2nd Int.Conf.System Biology,ICSB’01, Pasadena,CA (2001) 76, 82

    Google Scholar 

  3. Bockmayr, A., Courtoi, A.: Using hybrid concurrent constraint programming to model dynamic biological y tem. In 18th International Conference on Logic Programming,ICLP’02, Copenhagen Springer, LNCS 2401 (2002) 76, 82

    Google Scholar 

  4. Caputi, M.A., Mayeda, M.A., Krainer, A.R.,and Zahler, A.M.:hnRNP A/B protein are required for inhibition of HIV-1 pre-mRNA plicing. EMBO 18(14) (1999) 4060–7 77

    Google Scholar 

  5. Dautry, F., Weill, D.:Kinetic analy is of mRNA metabolism.In Interdisciplinary School on imaging,modelling and manipulating transcriptional regulatory networks, Ambleteuse (2002) 20/92 82

    Google Scholar 

  6. Del Gatto-Konczak, F., Olive, M., Gesnel, M.C., and Breathnach, R.:hnRNP A1 recruited to an exon in vivo can function as an exon splicing ilencer. Mol. Cell.Biol.19 (1)(1999)251–60 77

    Google Scholar 

  7. Graveley, B.R., Hertel, K.J., Maniatis, T.:A systematic analy is of the factors that determine the trength of pre-mRNA plicing enhancer. EMBO 17(22) (1998)6747–6756

    Google Scholar 

  8. Graveley, B.R.:Sorting out the complexity of SR protein functions.RNA 6 (2000) 1197–1211 75

    Google Scholar 

  9. Gupta, V., Jagadeesan, R., Saraswat V.:Computing with continuous change. Science of computer programming 30(1–2) (1998) 3–49 76,81

    Article  MATH  MathSciNet  Google Scholar 

  10. Gupta, V., Jagadeesan, R., Saraswat V., Bobrow, D.G.:Programming in hybrid constraint language. In Hybrid Systems II 226–251. Springer, LNCS 999 (1995) 76, 81, 82

    Google Scholar 

  11. Hammond, B.J.:Quantitative Study of the Control of HIV-1 Gene Expression. J.Theor.Biol.163 (1993)199–221 86

    Google Scholar 

  12. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.:From molecular to modular cell biology.Nature 402 (1999) C47–C52 82

    Article  Google Scholar 

  13. Heinrich, R., Schuster, S.:The regulation of cellular systems. Int’l Thomson Publishing, New York (1996)79

    MATH  Google Scholar 

  14. Moore, M.J., Query, C.C., Sharp, P.A.:Splicing of precursors to mRNA by the spliceosome.In The RNA World, Cold Spring Harbor Laboratory Press (1993) 303–357 76

    Google Scholar 

  15. O’Reilly, M., McNally, M.T., Beemon, K.L.:Two strong 5’ plice ites and competing, suboptimal 3’splice ites involved in alternative plicing of human immunodeficiency virus type 1 RNA.Virology 213(2) (1995) 373–85 77

    Article  Google Scholar 

  16. Palsson, B.:The challenges of in silico biology. Nature Biotechnology 18 (2000) 1147–1150 76

    Google Scholar 

  17. Purcell, D.F., Martin, M.A.:Alternative plicing of human immunodeficiency virus type 1 mRNA modulate viral protein expression, replication, and infectivity. J.Virol.67(11) (1993) 6365–6378 77

    Google Scholar 

  18. Ropers, D., Ayadi, L., Jacquenet, S., Méreau, A., Thomas, D., Mougin, A., Bilodeau, P., Stoltzfus, C.M., Gattoni, R., Stévenin, J., Branlant, C.:A complex regulation of the central A3 to A5 acceptor site in HIV-1 RNA. In Eukaryotic mRNA Processing (2001) 77

    Google Scholar 

  19. Saraswat, V.A.:Concurrent constraint programming. ACM Doctoral Dissertation Award. MIT Press (1993)81

    Google Scholar 

  20. Saraswat, V.A., Jagadeesan, R., Gupta, V.:Foundation of timed concurrent constraint programming. In 9th Symp.Logic in Computer Science,LICS’ 94, Paris IEEE (1994) 71–80 81

    Google Scholar 

  21. Saraswat, V.A., Jagadeesan, R., Gupta, V.:Timed default concurrent constraint programming. Journal of Symbolic Computation 22(5/6) (1996) 475–520 81

    Article  MATH  MathSciNet  Google Scholar 

  22. Segel, L.A.:Modelling dynamic phenomena in molecular and cellular biology. Cambridge University Press (1984)78

    Google Scholar 

  23. Si, Z.H., Amendt, B.A., Stoltzfus, C.M.:Splicing efficiency of human immunodeficiency virus type 1 tat RNA is determined by both a uboptimal 3’ splice site and a 10 nucleotide exon splicing ilencer element located within tat exon 2. N.A.R.25(4) (1997) 861–867

    Article  Google Scholar 

  24. Si, Z.H., Rauch, D., Stoltzfus, C.M.:The exon splicing silencer in human immunodeficiency virus type 1 Tat exon 3 i bipartite and acts early in spliceosomeassembly. Mol.Cell.Biol 18(9) (1998) 5404–13

    Google Scholar 

  25. Staffa, A., Cochrane, A.:The tat/rev intron of human immunodeficiency virus type 1 i ineffciently spliced because of suboptimal signals in the 3’ splice site. J. Virol.68(5) (1994) 3071–9

    Google Scholar 

  26. Tang, H., Kuhen, K.L., Wong-Staal, F.:Lentivirus replication and regulation.Annu.Rev.Genet 33 (1999)133–170 76

    Article  Google Scholar 

  27. Voit, E.:Computational Analysis of Biochemical Systems. Cambridge University Press (2000)79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A. (2003). Multiscale Modeling of Alternative Splicing Regulation. In: Priami, C. (eds) Computational Methods in Systems Biology. CMSB 2003. Lecture Notes in Computer Science, vol 2602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36481-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36481-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00605-3

  • Online ISBN: 978-3-540-36481-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics