Single and Bulk Updates in Stratified Trees: An Amortized andWorst-Case Analysis

  • Eljas Soisalon-Soininen
  • Peter Widmayer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2598)


Stratified trees form a family of classes of search trees of special interest because of their generality: they include symmetric binary B-trees, halfbalanced trees, and red-black trees, among others. Moreover, stratified trees can be used as a basis for relaxed rebalancing in a very elegant way. The purpose of this paper is to study the rebalancing cost of stratified trees after update operations. The operations considered are the usual insert and delete operations and also bulk insertion, in which a number of keys are inserted into the same place in the tree. Our results indicate that when insertions, deletions, and bulk insertions are applied in an arbitrary order, the amortized rebalancing cost for single insertions and deletions is constant, and for bulk insertions O(logm), where m is the size of the bulk. The latter is also a bound on the structural changes due to a bulk insertion in the worst case.


Pointer Change Search Tree Constant Number Current Layer Binary Search Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organisation of information. Dokl. Akad. Nauk SSSR 146 (1962), 263–266 (in Russian); English Translation in Soviet. Math. 3, 1259-1262.MathSciNetGoogle Scholar
  2. 2.
    R. Bayer: Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Informatica 1 (1972), 290–306.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein: Introduction to Algorithms, Second Edition, The MIT Press, Cambridge, Massachusetts, 2001.Google Scholar
  4. 4.
    E. M. McCreight: Priority search trees. SIAM Journal on Computing 14 (1985), 257–276.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. J. Guibas and R. Sedgewick: A dichromatic framework for balanaced trees. In: Proceedings of the 19th Annual IEEE Synposium on Foundations of Computer Science, Ann Arbor, pp. 8–21, 1978.Google Scholar
  6. 6.
    Chr. Icking, R. Klein, and Th. Ottmann: Priority search trees in secondary memory. In: Graphtheoretic Concepts in Computer Science (WG’ 87). Lecture Notes in Computer Science 314 (Springer-Verlag), pp. 84–93.Google Scholar
  7. 7.
    C. Jermaine, A. Datta, and E. Omiecinski. A novel index supporting high volume data warehouse insertion. In: Proceedings of the 25th International Conference on Very Large Databases. Morgan Kaufmann Publishers, 1999, pp. 235–246.Google Scholar
  8. 8.
    T.-W. Kuo, C-H. Wei, and K.-Y. Lam. Real-time data access control on B-tree index structures. In: Proceedings of the 15th International Conference on Data Engineering. IEEE Computer Society, 1999, pp. 458–467.Google Scholar
  9. 9.
    T. W. Lai and D. Wood: Adaptive heuristics for binary search trees and constant linkage cost. SIAM Journal on Computing 27:6 (1998), 1564–1591.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. S. Larsen. Relaxed multi-way trees with group updates. In: Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on principles of Database Systems. ACMPress, 2001, pp. 93–101. To appear in Journal of Computer and System Sciences.Google Scholar
  11. 11.
    J. van Leeuwen and M. H. Overmars: Stratified balanced search trees. Acta Informatica 18 (1983), 345–359.zbMATHCrossRefGoogle Scholar
  12. 12.
    L. Malmi and E. Soisalon-Soininen. Group updates for relaxed height-balanced trees. In: Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM Press, 1999, pp. 358–367.Google Scholar
  13. 13.
    K. Mehlhorn: Data Strucures and Algorithms, Vol. 1: Sorting and Searching, Springer-Verlag, 1986.Google Scholar
  14. 14.
    O. Nurmi, E. Soisalon-Soininen, and D. Wood: Concurrency control in database structures with relaxed balance. In: Proceedings of the Sixth ACM Symposium on Principles of Database Systems, pp. 170–176, 1987.Google Scholar
  15. 15.
    H. J. Olivie: A new class of balanced search trees: Half-balanced search trees. RAIRO Informatique Theorique 16 (1982), 51–71.zbMATHMathSciNetGoogle Scholar
  16. 16.
    Th. Ottmann, and E. Soisalon-Soininen: Relaxed balancing made simple. Institut für Informatik, Universität Freiburg, Technical Report 71, 1995.Google Scholar
  17. 17.
    Th. Ottmann and P. Widmayer: Algorithmen und Datenstrukturen, 4. Auflage, Spektrum-Verlag, Heidelberg, 2002.Google Scholar
  18. 18.
    Th. Ottmann and D. Wood: Updating binary trees with constant linkage cost. International Journal of Foundations of Computer Science 3:4 (1992), 479–501.zbMATHMathSciNetGoogle Scholar
  19. 19.
    K. Pollari-Malmi: Batch updates and concurrency control in in B-trees. Ph.D.Thesis, Helsinki University of Technology, Department of Computer Science and Engineering, Report A38/02, 2002.Google Scholar
  20. 20.
    K. Pollari-Malmi, E. Soisalon-Soininen, and T. Ylönen: Concurrency control in B-trees with batch updates. IEEE Transactions on Knowledge and Data Engineering 8 (1996), 975–984.CrossRefGoogle Scholar
  21. 21.
    N. Sarnak and R. E. Tarjan: Planar point location using persistent search trees. Communications of the ACM 29 (1986), 669–679.CrossRefMathSciNetGoogle Scholar
  22. 22.
    H.-W. Six and D. Wood: Counting and reporting insersections of d-ranges. IEEE Transactions on Computers, C–31 (1982), 181–187.MathSciNetCrossRefGoogle Scholar
  23. 23.
    D. D. Sleator and R. E. Tarjan: Self-adjusting binary search trees. Journal of the ACM 32 (1985), 652–686.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R. E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods 6 (1985), 306–318.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Eljas Soisalon-Soininen
    • 1
  • Peter Widmayer
    • 2
  1. 1.Department of Computer Science and EngineeringHelsinki University of TechnologyFinland
  2. 2.Institut für Theoretische InformatikETH Zentrum/CLWZürichSwitzerland

Personalised recommendations