Java Applets for the Dynamic Visualization of Voronoi Diagrams

  • Christian Icking
  • Rolf Klein
  • Peter Köllner
  • Lihong Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2598)


This paper is dedicated to Thomas Ottmann on the occasion of his 60th birthday.We discuss the design of several Java applets that visualize how the Voronoi diagram of n points continuously changes as individual points are moved across the plane, or as the underlying distance function is changed. Moreover, we report on some experiences made in using these applets in teaching and research. The applets can be found and tried out at


Convex Hull Unit Circle Voronoi Diagram Delaunay Triangulation Drag Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4(6):591–604, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, Reading, MA, 1996.Google Scholar
  3. 3.
    F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.CrossRefGoogle Scholar
  4. 4.
    F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 201–290. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.Google Scholar
  5. 5.
    J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. A new model for algorithm animation over the WWW. ACM Computing Surveys, 27(4):568–572, 1995.CrossRefGoogle Scholar
  6. 6.
    H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdivisions. J. Algorithms, 17:342–380, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. W. Cheng and R. Janardan. New results on dynamic planar point location. SIAM J. Comput., 21:972–999, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    L. P. Chew and R. L. Drysdale, III. Voronoi diagrams based on convex distance functions. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 235–244, 1985.Google Scholar
  9. 9.
    Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A unified approach to dynamic point location, ray shooting, and shortest paths in planar maps. SIAM J. Comput., 25:207–233, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Y.-J. Chiang and R. Tamassia. Dynamization of the trapezoid method for planar point location. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 61–70, 1991.Google Scholar
  11. 11.
    A. G. Corbalan, M. Mazon, T. Recio, and F. Santos. On the topological shape of planar Voronoi diagrams. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 109–115, 1993.Google Scholar
  12. 12.
    L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting triangles in a Delaunay tessellation. Algorithmica, 6:522–532, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. J. de Rezende and W. R. Jacometti. Animation of geometric algorithms using GeoLab. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 401–402, 1993.Google Scholar
  14. 14.
    O. Devillers, S. Pion, and M. Teillaud. Walking in a triangulation. In Proc. 17th Annu. ACM Sympos. Comput. Geom., pages 106–114, 2001.Google Scholar
  15. 15.
    L. Devroye, E. P. Mücke, and B. Zhu. A note on point location in Delaunay triangulations of random points. Algorithmica, 22:477–482, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    R. L. Drysdale, III. A practical algorithm for computing the Delaunay triangulation for convex distance functions. In Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pages 159–168, 1990.Google Scholar
  17. 17.
    D. Flanagan. Java in a Nutshell. O'Reilly & Associates, Sebastopol, fourth edition, 2002.Google Scholar
  18. 18.
    L. J. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi diagrams of moving points in the plane. In Proc. 17th Internat. Workshop Graph-Theoret. Concepts Comput. Sci., volume 570of Lecture Notes Comput. Sci., pages 113–125. Springer-Verlag, 1992.Google Scholar
  19. 19.
    D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 110–119, 1992.Google Scholar
  20. 20.
    C. Icking, R. Klein, N.-M. Lê, and L. Ma. Convex distance functions in 3-space are different. Fundam. Inform., 22:331–352, 1995.zbMATHGoogle Scholar
  21. 21.
    M. Jönger, V. Kaibel, and S. Thienel. Computing Delaunay triangulations in Manhattan and maximum metric. Technical Report 174, Zentrum für Angewandte Informatik Köln, 1994.Google Scholar
  22. 22.
    P.-T. Kandzia and T. Ottmann. VIROR: The virtual university in the Upper Rhine Valley, a new challenge for four prestigious universities in Germany. In Proc. Role of Universities in the Future Information Society, 1999.Google Scholar
  23. 23.
    R. Klein. Algorithmische Geometrie. Addison-Wesley, Bonn, 1997.Google Scholar
  24. 24.
    L. Ma. Bisectors and Voronoi Diagrams for Convex Distance Functions. PhD thesis, Department of Computer Science, FernUniversität Hagen, Technical Report 267, 2000.Google Scholar
  25. 25.
    H. Maurer and D. Kaiser. AUTOOL: A new system for computer assisted instruction. IIGReport 218, Inst. Informationsverarb., Tech. Univ. Graz, 1986.Google Scholar
  26. 26.
    H. Maurer and F. S. Makedon. COSTOC: Computer supported teaching of computer science. In Proc. of IFIP Conference on Teleteaching, pages 107–119. North-Holland, 1987.Google Scholar
  27. 27.
    K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge, UK, 2000.Google Scholar
  28. 28.
    J. Nievergelt, P. Schorn, M. de Lorenzi, C. Ammann, and A. Brüngger. XYZ: A project in experimental geometric computation. In Proc. Computational Geometry: Methods, Algorithms and Applications, volume 553 of Lecture Notes Comput. Sci., pages 171–186. Springer-Verlag, 1991.Google Scholar
  29. 29.
    S. Skyum. A sweepline algorithm for generalized Delaunay triangulations. Technical Report DAIMI PB-373, CS Dept., Aarhus University, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christian Icking
    • 1
  • Rolf Klein
    • 2
  • Peter Köllner
    • 3
  • Lihong Ma
    • 1
  1. 1.FernUniversität HagenHagenGermany
  2. 2.Universität BonnBonnGermany
  3. 3.BerlinGermany

Personalised recommendations