Advertisement

Route Planning and Map Inference with Global Positioning Traces

  • Stefan Edelkamp
  • Stefan Schrödl
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2598)

Abstract

Navigation systems assist almost any kind of motion in the physical world including sailing, flying, hiking, driving and cycling. On the other hand, traces supplied by global positioning systems (GPS) can track actual time and absolute coordinates of the moving objects.

Consequently, this paper addresses efficient algorithms and data structures for the route planning problem based on GPS data; given a set of traces and a current location, infer a short(est) path to the destination.

The algorithm of Bentley and Ottmann is shown to transform geometric GPS information directly into a combinatorial weighted and directed graph structure, which in turn can be queried by applying classical and refined graph traversal algorithms like Dijkstras’ single-source shortest path algorithm or A*.

For high-precision map inference especially in car navigation, algorithms for road segmentation, map matching and lane clustering are presented.

Keywords

Global Position System Cluster Center Road Segment Global Position System Data Route Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahuja, K. Mehlhorn, J. B. Orbin, and R. E. Tarjan. Faster algorithms for the shortest path problem. Journal of the ACM, pages 213–223, 1990.Google Scholar
  2. 2.
    I. J. Balaban. An optimal algorithm for finding segment intersection. In ACM Symposium on Computational Geometry, pages 339–364, 1995.Google Scholar
  3. 3.
    J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. Transactions on Computing, 28:643–647, 1979.zbMATHCrossRefGoogle Scholar
  4. 4.
    U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Travel planning with self-made maps. In Workshop on Algorithm Engineering and Experiments (ALENEX), 2001.Google Scholar
  5. 5.
    B. Chazelle. Reporting and counting segment intersections. Computing System Science, 32:200–212, 1986.MathSciNetGoogle Scholar
  6. 6.
    B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting lines in the plane. Journal of the ACM, 39:1–54, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    T.H. Cormen, C.E. Leiserson,and R.L. Rivest.Introduction to Algorithms. The MIT Press, 1990.Google Scholar
  8. 8.
    R. B. Dial. Shortest-path forest with topological ordering. Communication of the ACM, 12(11):632–633, 1969.CrossRefGoogle Scholar
  9. 9.
    E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik, 1:269–271, 1959.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Doucette, P. Agouris, A. Stefanidis, and M. Musavi. Self-organized clustering for road extraction in classified imagery. Journal of Photogrammetry and Remote Sensing, 55(5–6):347–358, March 2001.CrossRefGoogle Scholar
  11. 11.
    S. Edelkamp and S. Schroedl. Localizing A*. In National Conference on Artificial Intelligence (AAAI), pages 885–890, 2000.Google Scholar
  12. 12.
    M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithm. Journal of the ACM, 34(3):596–615, 1987.CrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Handley, P. Langley, and F. Rauscher. Learning ot predict the duration of an automobile trip. In Knowledge Discovery and Data Mining (KDD), pages 219–223, 1998.Google Scholar
  14. 14.
    A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, 1990.Google Scholar
  15. 15.
    C. A. Hipke. Verteilte Visualisierung von Geometrischen Algorithmen. PhD thesis, University of Freiburg, 2000.Google Scholar
  16. 16.
    D. S. Hirschberg. A linear space algorithm for computing common subsequences. Communications of the ACM, 18(6):341–343, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar graphs. Special Issue of Journal of Computer and System Sciences on selected papers of STOC 1994, 55(1):3–23, 1997.zbMATHGoogle Scholar
  18. 18.
    R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal sequence allignment. In National Conference on Artificial Intelligence (AAAI), pages 910–916, 2000.Google Scholar
  19. 19.
    J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Symposium on Math, Statistics, and Probability, volume 1, pages 281–297, 1967.Google Scholar
  20. 20.
    K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In European Symposium on Algorithms (ESA), 2002.Google Scholar
  21. 21.
    G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(1):159–179, 1985.CrossRefGoogle Scholar
  22. 22.
    C. Navigation Technologies, Sunnyvale. Software developer’s toolkit, 5.7.4 solaris edition, 1996.Google Scholar
  23. 23.
    B. W. Parkinson, J. J. Spilker, P. Axelrad, and P. Enge. Global Positioning System: Theory and Applications. American Institute of Aeronautics and Astronautics, 1996.Google Scholar
  24. 24.
    L. Piegl and W. Tiller. The nurbs book. Springer, 1997.Google Scholar
  25. 25.
    C. A. Pribe and S. O. Rogers. Learning to associate driver behavior with traffic controls. In Proceedings of the 78th Annual Meeting of the Transportation Review Board, Washington, DC, January 1999.Google Scholar
  26. 26.
    S. Rogers, P. Langley, and C. Wilson. Mining GPS data to augment road models. In Knowledge Discovery and Data Mining (KDD), pages 104–113, 1999.Google Scholar
  27. 27.
    S. Schroedl, S. Rogers, and C. Wilson. Map refinement from GPS traces. Technical Report RTC 6/2000, DaimlerChrysler Research and Technology North America, Palo Alto, CA, 2000.Google Scholar
  28. 28.
    F. Schulz, D. Wagner, and K.6Weihe. Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. Journal of Experimental Algorithmics, 5(12), 2000.Google Scholar
  29. 29.
    F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-level graphs for timetable information. In Workshop on Algorithm Engineering and Experiments (ALENEX), 2002.Google Scholar
  30. 30.
    L. Thoma and N. Zeh. I/O-efficient algorithms for sparse graphs. In Memory Hierarchies, Lecture Notes in Computer Science. Springer, 2002. To appear.Google Scholar
  31. 31.
    M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM, 46:362–394, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    J. Wang, S. Rogers, C. Wilson, and S. Schroedl. Evaluation of a blended DGPS/DR system for precision map refinement. In Proceeedings of the ION Technical Meeting 2001, Institute of Navigation, Long Beach, CA, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Stefan Edelkamp
    • 1
  • Stefan Schrödl
    • 2
  1. 1.Institut für InformatikFreiburg
  2. 2.DaimlerChrysler Research and TechnologyPalo Alto

Personalised recommendations