Skip to main content

Turing Patterns in Nonlinear Optics

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 183))

Abstract

A well-known transverse-pattern formation mechanism in broad-aperture lasers and other nonlinear resonators is off-resonance excitation. If the central frequency of the gain line of the laser ω A is larger than the resonator resonance frequency ω R, then the excess of frequency Δω = ω Aω R causes a transverse (spatial) modulation of the laser fields, with a characteristic transverse wavenumber k obeying a dispersion relation ak 2 = Δω, where a is the diffraction coefficient of the resonator. The patterns that occur in such a way play the role of a “bridge” between the excitation and the dissipation, which occur at different frequencies, and these patterns enable maximum energy transfer through the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237, 37 (1952).

    Article  ADS  Google Scholar 

  2. M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  3. K. Staliunas, Stabilization of spatial solitons by gain diffusion, Phys. Rev. A 61, 053813 (2000).

    Article  ADS  Google Scholar 

  4. N.N. Rosanov, Transverse Patterns in Wide-Aperture Nonlinear Optical Systems, Progress in Optics, vol. 35, ed. by E. Wolf (North-Holland, Amsterdam, 1996).

    Google Scholar 

  5. S. Fauve and O. Thual, Solitary waves generated by subcritical instabilities in dissipative systems, Phys. Rev. Lett. 64, 282 (1990); M. Tlidi, P. Mandel and R. Lefever, Localized structures and localized patterns in optical bistability, Phys. Rev. Lett. 73, 640 (1994).

    Article  ADS  Google Scholar 

  6. D. Michaelis, U. Peschel and F. Lederer, Multistable localized structures and superlattices in semiconductor optical resonators, Phys. Rev. A 56, R3366 (1997); M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli and W.J. Firth, Spatial soliton pixels in semiconductor devices, Phys. Rev. Lett. 79, 2042 (1997).

    Article  ADS  Google Scholar 

  7. L.A. Lugiato, C. Oldano, C. Fabre, E. Giacobino and R. Horowicz, Bistability, self-pulsing and chaos in optical parametric oscillators, Nuovo Cimento 10D, 959 (1988).

    Article  ADS  Google Scholar 

  8. K. Staliunas and V.J. Sánchez-Morcillo, Turing patterns in nonlinear optics, Opt. Commun. 177, 389 (2000).

    Article  ADS  Google Scholar 

  9. I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems J. Chem. Phys. 48, 1696 (1968).

    Article  ADS  Google Scholar 

  10. V.J. Sánchez-Morcillo and K. Staliunas, Role of pump diffraction on the stability of localized structures in degenerate optical parametric oscillators, Phys. Rev. E. 61, 7076 (2000).

    Article  ADS  Google Scholar 

  11. G.L. Oppo, A.J. Scroggie and W.J. Firth, From domain walls to localized structures in degenerate optical parametric oscillators, J. Opt. B: Quantum Semiclass. Opt. 1, 133 (1999).

    Article  ADS  Google Scholar 

  12. G.T. Dee and W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett. 60, 2641 (1988).

    Article  ADS  Google Scholar 

  13. L.A. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58, 2209 (1987).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2003). Turing Patterns in Nonlinear Optics. In: Transverse Patterns in Nonlinear Optical Resonators. Springer Tracts in Modern Physics, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36416-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36416-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00434-9

  • Online ISBN: 978-3-540-36416-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics