Advertisement

Direct Embedding and Detection of RST Invariant Watermarks

  • Peter A. Fletcher
  • Kieran G. Larkin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2578)

Abstract

A common goal of many watermarking techniques is to produce a mark that remains detectable after the geometric transformations of Rotation, Scale and Translation; also known as RST invariance. We present a simple approach to achieving RST invariance using pixel-by-pixel addition of oscillating homogeneous patterns known as Logarithmic Radial Harmonic Functions [LRHFs]. LRHFs are the basis functions of the Fourier-Mellin transform and have perfect correlation, orthogonality, and spread-spectrum properties. Once the patterns have been embedded in an image they can be detected directly regardless of RST and with great sensitivity by correlation with the corresponding complex LRHFs. In contrast to conventional methods our approach is distinguished by the utilization of signal phase information and the absence of interpolation artifacts. Data encoding is based on the information in the relative centre positions of multiple spatially overlapping patterns.

Keywords

Instantaneous Frequency Watermark Scheme Correlation Peak JPEG Compression Equiangular Spiral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Ruanaidh, J. J. K., and Pun, T., “Rotation, Scale and Translation Invariant Spread Spectrum Digital Image Watermarking”, Sig. Proc. 66,(3), 303–317, (1998).zbMATHGoogle Scholar
  2. 2.
    Cox, I. J., Kilian, J., Leighton, F. T., and Shamoon, T., “Secure Spread Spectrum Watermarking For Multimedia”, IEEE Transactions of Image Processing 6,(12), 1673–1687, (1997).CrossRefGoogle Scholar
  3. 3.
    Rhoads, G, US patent 5,636,292, “Steganography methods employing embedded calibration data”, 1995.Google Scholar
  4. 4.
    Honsinger, C., and Rabbani, M., “Data Embedding Using Phase Dispersion”, Eastman Kodak, 2000.Google Scholar
  5. 5.
    Linnartz, J.-P., Depovere, G., and Kalker, T., “On the Design of a Watermarking System: Considerations and Rationales,” Information Hiding, Third International Workshop, IH’99, Dresden, Germany, (1999), 253–269.Google Scholar
  6. 6.
    Maes, M., Kalker, T., Haitsma, J., and Depovere, G., “Exploiting Shift Invariance to Obtain a High Payload in DigitalImage Watermarking,” IEEE International Conference on Multimedia Computing and Systems, ICMCS, Florence, Italy, (1999), 7–12.Google Scholar
  7. 7.
    V. Solachidis, and Pitas, I., “Self-similar ring shaped watermark embedding in 2-D DFT domain,”. European Signal Processing Conf.(EUSIPCO’00), Tampere, Finland, 2000Google Scholar
  8. 8.
    Casasent, D., and Psaltis, D., “Position, rotation, and scale invariant optical correlation”, Applied Optics 15,(7), 1795–1799, (1976).Google Scholar
  9. 9.
    Mendlovic, D., Marom, E., and Konforti, N., “Shift and scale invariant pattern recognition using Mellin radial harmonics”, Opt. Comm. 67,(3), 172–176, (1988).CrossRefGoogle Scholar
  10. 10.
    Rosen, J., and Shamir, J., “Scale invariant pattern recognition with logarithmic radial harmonic filters”, App. Opt. 28,(2), 240–244, (1989).CrossRefGoogle Scholar
  11. 11.
    Sheng, Y., and Shen, L., “Orthogonal Fourier Mellin moments for invariant pattern recognition”, J. Opt. Soc. Am. A 11,(6), 1748–1757, (1994).Google Scholar
  12. 12.
    Moses, H. E., and Prosser, R. T., “Phases of complex functions from the amplitudes of the functions and the amplitudes of the Fourier and Mellin transforms”, J. Opt. Soc. Am. A 73,(11), 1451–1454, (1983).MathSciNetGoogle Scholar
  13. 13.
    Larkin, K. G., Bone, D., and Oldfield, M. A., “Natural demodulation of two-dimensional fringe patterns: I. General background to the spiral phase quadrature transform.”, J. Opt. Soc. Am. A 18,(8), 1862–1870, (2001). http://www.physics.usyd.edu.au/~larkin/ CrossRefGoogle Scholar
  14. 14.
    Champeney, D. C., A handbook of Fourier transforms, Cambridge University Press, Cambridge, 1987.Google Scholar
  15. 15.
    Bracewell, R. N., Two-Dimensional Imaging, Prentice Hall, Englewood Cliffs, New Jersey, 1995.zbMATHGoogle Scholar
  16. 16.
    Larkin, K. G., “Topics in Multi-dimensional Signal Demodulation”, PhD. University of Sydney, 2001. http://setis.library.usyd.edu.au/~thesis/
  17. 17.
    Larkin, K. G., “Natural demodulation of two-dimensional fringe patterns: II. Stationary phase analysis of the spiral phase quadrature transform.”, J. Opt. Soc. Am. A 18,(8), 1871–1881, (2001).CrossRefMathSciNetGoogle Scholar
  18. 18.
    Bracewell, R. N., The Fourier transform and its applications, McGraw Hill, New York, 1978.Google Scholar
  19. 19.
    Stein, E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.zbMATHGoogle Scholar
  20. 20.
    Calderon, A. P., and Zygmund, A., “On the existence of certain singular integrals”, Acta Mathematica 88, 85–139, (1952).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Petitcolas, F. A. P., Anderson, R. J., and Kuhn, M. G., “Attacks on copyright marking systems,” Information Hiding, Second International Workshop, IH’98, Portland, Oregon, USA, (1998), 219–239.Google Scholar
  22. 22.
    Petitcolas, F. A. P., “Watermarking scheme evaluation-Algorithms need common benchmarks.” IEEE Signal Processing Magazine 17,(5), 58–64, (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Peter A. Fletcher
    • 1
  • Kieran G. Larkin
    • 1
  1. 1.Advanced Technology DivisionCanon Information Systems Research Australia Pty, Ltd [CISRA]Australia

Personalised recommendations