Skip to main content

Mineral Liquid Crystals from Self-Assembly of Anisotropic Nanosystems

  • Chapter
  • First Online:
Colloid Chemistry I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 226))

Abstract

In this article we review the mesogenic properties of the mineral liquid crystals (MLCs) based on molecular nanowires: Li2Mo6Se6; nanotubes: Imogolite and NaNb2PS10; molecular ribbons: V2O5; exfoliated single sheets: smectic clays and H3Sb3P2O14; nanorods: Boehmite (γ-AlOOH), Akaganeite (β-FeOOH ), Goethite (α-FeOOH); platelets: Gibbsite (Al(OH)3); disks: Ni(OH)2; bio-mineral hybrids. We then propose numerous phases that could lead to the discovery of new MLCs. We finally review how the properties of these mesophases and their collective behavior have been used for making mesoporous composites with anisotropic properties, for making nanodevices and solar cells, as well as how they could be used to allow the measurement of residual dipolar couplings in NMR studies of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Gennes PG, Prost J (1995) The physics of liquid crystals. Clarendon Press, Oxford

    Google Scholar 

  2. Tschierske C (1998) J Mater Chem 8:1485

    Article  CAS  Google Scholar 

  3. Demus D, Goodby JW, Gray GW, Spiess HW, Vill V (eds) (1998) Handbook of liquid crystals. Wiley, Weinheim

    Google Scholar 

  4. a) Davidson P, Batail P, Gabriel JCP, Livage J, Sanchez C, Bourgaux C (1997) Prog Polym Sc 22:913; b) Gabriel JCP, Davidson P (2000) Adv Mater 12:9

    Article  CAS  Google Scholar 

  5. Gabriel JCP, Uriel S, Boubekeur K, Batail P (2001) Chem Rev 101:2037

    Article  CAS  Google Scholar 

  6. Sayettat J, Bull LM, Gabriel JCP, Jobic S, Camerel F, Marie AM, Fourmigué M, Batail P, Brec R, Inglebert RL (1998) Angew Chem Int Ed 37:1711

    Article  CAS  Google Scholar 

  7. Oriol L, Serrano JL (1995) Adv Mater 7:348

    Article  CAS  Google Scholar 

  8. Zocher H (1925) Z Anorg Allg Chem 147:91

    Article  CAS  Google Scholar 

  9. Langmuir I (1938) J Chem Phys 6:873

    Article  CAS  Google Scholar 

  10. Onsager L (1949) Ann NY Acad Sci 51:627

    Article  CAS  Google Scholar 

  11. See, for instance, Samborski A, Evans GT, Mason CP, Allen MP (1994) Mol Phys 81:263

    Article  CAS  Google Scholar 

  12. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  13. Synthesis of M2Mo6Se6: a) M=Tl. In: Potel M, Chevrel R, Sergent M (1980) Acta Cryst B 36:1545; b) (M=Li, Na, K, Rb, Cs) Tarascon JM, Hull GW, DiSalvo FJ (1984) Mater Res Bull 19:915

    Article  Google Scholar 

  14. Most members of the family, M2Mo6Y6 (M=Na, In, K, Rb, Cs, Tl, Y=chalcogen), are pseudo-one-dimensional metals with even a superconductor at 3 K with Tl2Mo6Se6: a) Armici JC, Decroux M, Fisher Ø, Potel M, Chevrel R, Sergent M (1980) Solid State Comm 33:607; b) Potel M, Chevrel R, Sergent M, Armici JC, Decroux M, Fisher Ø (1980) J Solid State Chem 35:286

    Article  CAS  Google Scholar 

  15. Tarascon JM, DiSalvo FJ, Chen CH, Carrol PJ, Walsh M, Rupp L (1985) J Solid State Chem 58:290

    Article  CAS  Google Scholar 

  16. Gabriel JCP (1993) PhD Thesis, University Paris XI, Orsay

    Google Scholar 

  17. a) Davidson P, Gabriel JC, Levelut AM, Batail P (1993) Europhys Lett 21:317; b) Davidson P, Gabriel JC, Levelut AM, Batail P (1993) Adv Mater 5:665

    Article  CAS  Google Scholar 

  18. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon Y, Mazzoni MSC, Choi H, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Science 288:494

    Article  CAS  Google Scholar 

  19. Messer B, Song JH, Huang M, Wu YY, Kim F, Yang PD (2000) Adv Mater 12:1526

    Article  CAS  Google Scholar 

  20. Song JH, Messer B, Wu YY, Kind H, Yang PD (2001) J Am Chem Soc 123:9714–9715

    Article  CAS  Google Scholar 

  21. Venkataraman L, Lieber CM (1999) Phys Rev Lett 83:5334

    Article  CAS  Google Scholar 

  22. Bronger W, Müller P (1984) J Less Comm Met 100:241

    Article  CAS  Google Scholar 

  23. Lu YJ, Ibers JA (1993) Comments Inorg Chem 14:229

    Article  CAS  Google Scholar 

  24. For example, this was observed in the case of the series Na2−xLixMo6Se6 (x=0–2) [15]

    Google Scholar 

  25. a) Farmer C, Fraser AR, Tait JM (1977) Chem Comm 462; b) Wada S-I, Eto A, Wada K (1979) J Soil Sci 30:347; c) Wada S-I (1987) Clays Clay Miner 35:379

    Google Scholar 

  26. Barett SM, Budd PM, Price C (1991) Eur Polym J 27:609; d) US Pats 4,252,779 and 4,241,035

    Article  Google Scholar 

  27. Koenderink GH, Kluijtmans SGJM, Philise AP (1999) J Colloid Interface Sci 216:429

    Article  CAS  Google Scholar 

  28. In the case of synthetic Imogolite, it seems that the diameter of the cylinder is 28 Å, slightly more that the natural one

    Google Scholar 

  29. a) Kajiwara K, Donkai N, Hiragi Y, Inagaki H (1986) Makromol Chem 187:2883; b) Kajiwara K, Donkai N, Fujiyoshi Y, Inagaki H (1986) Makromol Chem 187:2895; c) Donkai N, Kajiwara K, Schmidt M, Miyamoto T (1993) Makromol Chem Rapid Comm 14:611

    Article  CAS  Google Scholar 

  30. Donkai N, Hoshino H, Kajiwara K, Miyamoto T (1993) Makromol Chem 194:559

    Article  CAS  Google Scholar 

  31. a) Livolant F, Leforestier A (1996) Prog Polym Sc 21:1115; b) Giraud-Guille MM (1998) Curr Opin Solid State Mater Sci 3:221

    Article  CAS  Google Scholar 

  32. a) Hoshino H, Yamana M, Donkai N, Sinigerski V, Kajiwara K, Miyamoto T, Inagaki H (1992) Polym Bull 28:607; b) Hoshino H, Ito T, Donkai N, Urakawa H, Kajiwara K (1992) Polym Bull 29:453

    Article  CAS  Google Scholar 

  33. Ramos L, Molino F, Porte G (2000) Langmuir 16:5846

    Article  CAS  Google Scholar 

  34. Camerel F, Gabriel JCP, Davidson P, Schmutz M, Gulik-Krzywicki T, Lemaire B, Bourgaux C, Batail P (2002) Nanoletters 2:403

    CAS  Google Scholar 

  35. Livage J (1991) Chem Mater 3:578

    Article  CAS  Google Scholar 

  36. Bailey JK, Nagase T, Pozarnsky GA, MeCartney ML (1990) Mat Res Soc Symp Proc 180:759; b) Pozarnsky GA, McCormick AV (1994) Chem Mater 6:380; c) Livage J (1998) Coord Chem Rev 178/180:999; d) Pelletier O, Davidson P, Bourgaux C, Coulon C, Regnault S, Livage J (2000) Langmuir 16:5295

    CAS  Google Scholar 

  37. a) Davidson P, Garreau A, Livage J (1994) Liq Cryst 16:905; b) Davidson P, Bourgaux C, Schoutteten L, Sergot P, Williams C, Livage J (1995) Phys II (France) 5:1577; c) Pelletier O, Bourgaux C, Diat O, Davidson P, Livage J (2000) Eur Phys J E 2:191

    Article  CAS  Google Scholar 

  38. Pelletier O, Bourgaux C, Diat O, Davidson P, Livage J (1999) Eur Phys J B 12:541

    Article  CAS  Google Scholar 

  39. Commeinhes X, Davidson P, Bourgaux C, Livage J (1997) Adv Mater 9:900

    Article  CAS  Google Scholar 

  40. Panar M, Beste LF (1977) Macromolecules 10:1401; b) Sridhar CG, Hines WA, Samulski ET (1974) J Chem Phys 61:947

    Article  CAS  Google Scholar 

  41. Srajer G, Fraden S, Meyer RB (1989) Phys Rev A 39:4828

    Article  CAS  Google Scholar 

  42. Davidson P, Petermann D, Levelut AM (1995) J Phys II (France) 5:113

    Article  CAS  Google Scholar 

  43. Pelletier O, Davidson P, Bourgaux C, Livage J (1999) Europhys Lett 48:53

    Article  CAS  Google Scholar 

  44. Pelletier O, Sotta P, Davidson P (1999) J Phys Chem B 103:5427

    Article  CAS  Google Scholar 

  45. Lamarque-Forget S, Pelletier O, Dozov I, Davidson P, Martinot-Lagarde P, Livage J (2000) Adv Mater 12:1267

    Article  CAS  Google Scholar 

  46. Van Olphen H (1977) An introduction to clay colloid chemistry. Wiley, New York

    Google Scholar 

  47. a) Burger J, Sourieau P, Combarnous M (1985) Thermal methods of oil recovery. Technip, Paris; b) Pinnavaia TJ (1983) Nature 220:365; c) Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kagimaito O, Kaji K (1995) J Polym Sci B 33:1039

    Google Scholar 

  48. Emerson WW (1956) Nature 178:1248

    Article  CAS  Google Scholar 

  49. a) Mourchid A, Delville A, Lambard J, Lécolier E, Levitz P, (1995) Langmuir 11:1942; b) Mourchid A, Lécolier E, Van Damme H, Levitz P (1998) Langmuir 14:4718; Pignon F, Piau JM, Magnin A (1996) Phys Rev Lett 76:4857; c) Pignon F, Magnin A, Piau JM (1997) Phys Rev Lett 79:4689; d) Pignon F, Magnin A, Piau JM, Cabane B, Lindner P, Diat O (1997) Phys Rev E 56:3281; e) Bonn D, Tanaka H, Wegdam G, Kellay H, Meunier J (1998) Europhys Lett 45:52; f) Bonn D, Kellay H, Tanaka H, Wegdam G, Meunier J (1999) Langmuir 15:7534

    Article  CAS  Google Scholar 

  50. Gabriel JCP, Sanchez C, Davidson P (1996) J Phys Chem 100:11,139

    Article  CAS  Google Scholar 

  51. a) Forsyth PA, Marcelja JS, Mitchell DJ, Ninham BW (1978) Adv Colloid Interface Sci 9:37; b) Eppenga R, Frenkel D (1984) Mol Phys 52:1303; c) Frenkel D (1989) Liq Cryst 5:929

    Article  CAS  Google Scholar 

  52. Lemaire BJ, Panine P, Gabriel J-CP, Davidson P (2002) Europhys Lett (in press)

    Google Scholar 

  53. Morvan M, Espinat D, Lambard J, Zemb T (1994) Colloid Surf A 82:193

    Article  CAS  Google Scholar 

  54. Forsyth PA, Marcelja JS, Mitchell DJ, Ninham BW (1978) Adv Colloid Interface Sci 9:37

    Article  CAS  Google Scholar 

  55. Mourchid A, Levitz P (1998) Phys Rev E 57:R4887 and references cited therein

    Article  CAS  Google Scholar 

  56. Levitz P, Lécolier E, Mourchid A, Delville A, Lyonnard S (2000) Europhys Lett 49:672

    Article  CAS  Google Scholar 

  57. a) Saunders JM, Goodwin JW, Richardson RM, Vincent B (1999) J Phys Chem B, 103:9211; b) Ramsay JDF, Lindner P (1993) J Chem Soc Faraday Trans, 89:4207; c) Ramsay JDF, Swanton SW, Bunce J (1990) J Chem Soc Faraday Trans 86:3919; d) DiMasi E, Fossum JO, Gog T, Venkataraman C (2001) Phys Rev E, 64:061704; e) Porion P, Al Mukhtar M, Faugère AM, van der Maarel JRC, Delville A (2001) J Phys Chem B 105:10505

    Article  CAS  Google Scholar 

  58. Bihannic I, Michot LJ, Lartiges BS, Vantelon D, Labille J, Thomas F, Susini J, Salomé M, Fyard B (2001) Langmuir 17:4144

    Article  CAS  Google Scholar 

  59. Cousin F, Cabuil V, Levitz P (2002) Langmuir 18:1466

    Article  CAS  Google Scholar 

  60. A new study of the salt-induced ordering in lamellar colloids appeared while this paper was in press: Rowan DG, Hansen JP (2002) Langmuir 18:2063–2068

    Article  CAS  Google Scholar 

  61. Gabriel JCP, Camerel F, Lemaire BJ, Desvaux H, Davidson P, Batail P (2001) Nature 413:504

    Article  CAS  Google Scholar 

  62. Piffard Y, Verbaere A, Lachgard A, Deniard-Courant S, Tournoux M (1986) Rev Chim Gen 23:766

    CAS  Google Scholar 

  63. Zocher H, Torök C (1960) Kolloid Zeit170:140; b) Zocher H, Torök C (1960) Kolloid Zeit 173:1; c) Zocher H, Torök C (1962) Kolloid Zeit 180:41

    Article  CAS  Google Scholar 

  64. Bugosh J (1961) J Phys Chem 65:1789

    Article  CAS  Google Scholar 

  65. a) Buining PA, Pathmamanoharan C, Jansen JBH, Lekkerkerker HNW (1991) J Ceram Soc 74:1303; b) Buining PA, Philipse AP, Lekkerkerker HNW (1994) Langmuir 10:2106; c) van Bruggen MPB, Donker M, Lekkerkerker HNW, Hugues TL (1999) Colloid Surf 150:115; d) Buining PA, Veldhuizen YSJ, Pathmamanoharan C, Lekkerkerker HNW (1992) Colloid Surf 64:47; e) Buining PA, Lekkerkerker HNW (1993) J Phys Chem 97:11,510; f) Vroege GJ, Lekkerkerker HNW (1993) J Phys Chem 97:3601

    Article  CAS  Google Scholar 

  66. van Bruggen MPB, Dhont JKG, Lekkerkerker HNW (1999) Macromolecules 32:2256

    Article  Google Scholar 

  67. a) Deryagin BV, Landau L (1941) Acta Physicochim URSS 333:55; b) Verwey E, Overbeek JW (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  68. Israelachvili JN (1991) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  69. Pelletier O, Davidson P, Bourgaux C, Livage J (1999) Progr Colloid Polym Sci 112:121

    Article  CAS  Google Scholar 

  70. a) van Bruggen MPB, Lekkerkerker HNW, Dhont JKG (1997) Phys Rev E 56:4394; b) Wierenga AM, Philipse AP, Reitsma EM (1997) Langmuir 13:947; c) Wierenga AM, Philipse AP, Lekkerkerker HNW, Boger DV (1998) Langmuir 14:55; d) van Bruggen MPB, Lekkerkerker HNW, Maret G, Dhont JKG (1998) Phys Rev E 58:7668

    Article  Google Scholar 

  71. van der Kooij F, Lekkerkerker HNW (1998) J Phys Chem B 102:7829

    Article  Google Scholar 

  72. Bates MA, Frenkel D (1999) J Chem Phys 110:6553

    Article  CAS  Google Scholar 

  73. Chandrasekhar S, Sadashiva BK, Suresh KA (1977) Pramana 7:471

    Article  Google Scholar 

  74. Brown ABD, Clarke SM, Rennie AR (1998) Langmuir 14:3129

    Article  CAS  Google Scholar 

  75. Brown ABD, Ferrero C, Narayanan T, Rennie AR (1999) Eur Phys J B 11:481

    Article  CAS  Google Scholar 

  76. Veerman JAC, Frenkel D (1992) Phys Rev A 45:5632

    Article  Google Scholar 

  77. Brown ABD, Rennie AR (2000) Phys Rev E 62:851

    Article  CAS  Google Scholar 

  78. van der Kooij FM, Kassapidou K, Lekkerkerker HNW (2000) Nature 406:868

    Article  Google Scholar 

  79. van der Kooij FM, van der Beek D, Lekkerkerker HNW (2001) J Phys Chem B 105:1696

    Article  CAS  Google Scholar 

  80. Wensink HH, Vroege GJ, Lekkerkerker HNW (2001) J Phys Chem B 105:10,610

    Article  CAS  Google Scholar 

  81. van der Kooij FM, Lekkerkerker HNW (2000) Phys Rev Lett 84:781

    Article  Google Scholar 

  82. Wensink HH, Vroege GJ, Lekkerkerker HNW (2001) J Chem Phys 115:7319

    Article  CAS  Google Scholar 

  83. van der Kooij FM, Lekkerkerker HNW (2000) Langmuir 16:10,144

    Google Scholar 

  84. Zocher H, Jacobsohn K (1929) Kolloid Beih 28:167

    Article  CAS  Google Scholar 

  85. Heller W (1935) Compt Rend 201:831; b) Heller W (1980) Polymer colloids II. Fitch E (ed) Plenum Press, New York, and references cited therein

    CAS  Google Scholar 

  86. a) Maeda Y, Hachisu S (1983) Colloids Surf 6:1; b) Maeda H, Maeda Y (1996) Langmuir 12:1446

    Article  CAS  Google Scholar 

  87. Cornell RM, Schwertmann U (1996) The iron oxides. VCH, Weinheim

    Google Scholar 

  88. Lemaire BJ, Davidson P, Ferre J, Jamet JP, Panine P, Dozov I, Jolivet JP (2002) Phys Rev Lett 88:125,507

    Article  CAS  Google Scholar 

  89. Iijima (1991) Nature 354:56

    Article  CAS  Google Scholar 

  90. a) Ozin GA (1992) Adv Mater 4:612; b) Martin CR (1994) Science 266:1961; c) Martin CR (1996) Acc Chem Res 28:61

    Article  CAS  Google Scholar 

  91. Wu CG, Bein T (1994) Science 266:1013

    Article  CAS  Google Scholar 

  92. a) Piraux L, George JM, Despres JF, Leroy C, Ferain E, Legras R, Ounadjela K, Fert A (1994) Appl Phys Lett 65:2484; b) Fert A, Piraux L (1999) J Magn Magn Mater 200:338

    Article  CAS  Google Scholar 

  93. a) Martin BR, Dermody DJ, Reiss BD, Fang MM, Lyon LA, Natan MJ, Mallouk TE (1999) Adv Mater 11:1021; b) Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Science 294:137

    Article  CAS  Google Scholar 

  94. Lisiedki I, Pileni MP (1993) JACS 115:3887

    Article  Google Scholar 

  95. a) Tanori J, Pileni MP (1995) Adv Mater 7:862; b) Tanori J, Pileni MP (1997) Langmuir 13:639; c) Filankenbo, Pileni MP (2000) Appl Surf Science 164:260

    Article  CAS  Google Scholar 

  96. Li M, Schnablegger H, Mann S (1999) Nature 402:393

    Article  CAS  Google Scholar 

  97. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Nature 404:59

    Article  CAS  Google Scholar 

  98. a) Hu J, Odom TW, Lieber CM (1999) Acc Chem Res 32:435; b) Wu Y, Yan H, Huang M, Messer B, Song JH, Yang P (2002) Chem Eur J 8:1261

    Article  CAS  Google Scholar 

  99. Shimoda H, Oh SJ, Geng HZ, Walker RJ, Zhang XB, McNeil LE, Zhou O (2002) Adv Mater 14:899

    Article  CAS  Google Scholar 

  100. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Science 290:1331

    Article  CAS  Google Scholar 

  101. Lynch MD, Patrick DL (2002) Nanoletters (in press)

    Google Scholar 

  102. Li LS, Walda J, Manna L, Alivisatos AP (2002) Nano Lett 2:557

    Article  CAS  Google Scholar 

  103. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley Interscience, New York

    Google Scholar 

  104. Tjandra N, Garrett DS, Gronenborn AM, Bax A, Clore GM (1997) Nat Struct Biol 4:443

    Article  CAS  Google Scholar 

  105. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Nat Struct Biol 4:732

    Article  CAS  Google Scholar 

  106. Tjandra N, Bax A (1997) Science 278:1111

    Article  CAS  Google Scholar 

  107. For a quick review: Prestegard JH, Kishore AI (2001) Curr Opin Chem Biol 5:584 and references therein

    Article  CAS  Google Scholar 

  108. Losonczi JA, Prestegard JH (1998) J Biomol NMR 12:47

    Article  Google Scholar 

  109. Desvaux H, Gabriel JCP, Berthault P, Camerel F (2001) Angew Chem Int Ed 40:373

    Article  CAS  Google Scholar 

  110. Berthault P, Jeannerat D, Zhang Y, Camerel F, Alvarez-Salgado F, Boulard Y, Sinaÿ P, Gabriel JCP, Desvaux H (submitted)

    Google Scholar 

  111. See www graphical abstract that represent biomolecules within H3Sb3P3O14 sheets

    Google Scholar 

  112. a) Golden JH, DiSalvo FJ, Fréchet JMJ (1995) Chem Mater 7:232; b) Golden JH, DiSalvo FJ, Fréchet JMJ, Silcox J, Thomas M, Ellman J (1996) Science 273:782

    Article  CAS  Google Scholar 

  113. Here are few examples of patents of composites based on a dispersed clay with enhanced mechanical or gas barrier properties: US4472538, US4739007, US4889885, US4894411, EP0352042, EP0398551, WO9304117, WO9304118, WO9311190, US5385776, US5514734, EP0358415

    Google Scholar 

  114. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Science 290:1331

    Article  CAS  Google Scholar 

  115. Chang J. Personnal communication

    Google Scholar 

  116. Huang Y, Duan X, Wei Q, Lieber CM (2001) Science 291:630

    Article  CAS  Google Scholar 

  117. Camerel F, Gabriel JCP, Batail P (2002) Chem Comm 1926

    Google Scholar 

  118. Saupe GB, Waraksa CC, Kim HN, Han YJ, Kaschak DM, Skinner DM, Mallouk TE (2000) Chem Mater 12:1556

    Article  CAS  Google Scholar 

  119. A nice optical study of this MLC (K4Nb6O17 sols) appeared while this paper was in Press: Miyamoto N, Nakato T (2002) Adv Mater 14:1267

    Article  CAS  Google Scholar 

  120. Goltsov YG, Matkovskaya LA, Smelaya ZV, Il’in VG (1999) Mendeleev Commun 241

    Google Scholar 

  121. a) Camerel F (2001) PhD Thesis, Nantes University, France; b) Camerel F, Gabriel JCP, Batail P (2002) In Press, Adv Funct Mater

    Google Scholar 

  122. Huynh WU, Dimer JJ, Alivisatos AP (2002) Science 295:2425

    Article  CAS  Google Scholar 

  123. Borazano L, Carte SA, Scott JC, Malliaras GG, Brock PJ (1999) Appl Phys Lett 74:1132

    Article  Google Scholar 

  124. Lee SW, Mao C, Flynn CE, Belcher AM (2002) Science 296:892

    Article  CAS  Google Scholar 

  125. a) Dogic Z, Fraden S (1997) Phys Rev Lett 78:2417; b) Dogic Z, Fraden S (2000) Langmuir 16:7820; c) Lapointe J, Marvin DA (1973) Mol Cryst Liq Cryst 19:269; d) Issaenko A, Harris SA, Lubensky TC (1999) Phys Rev E 60:578

    Article  CAS  Google Scholar 

  126. It has been shown recently that engineered viruses can recognize specific semiconductor surfaces using the method of selection by combinatorial phage display: Whaley R, English DS, Hu EL, Barbara PF, Belcher AM (2000) Nature 405:665

    Article  CAS  Google Scholar 

  127. Sonin AS (1998) Colloid J 60:129

    CAS  Google Scholar 

  128. A report of a possible new MLC appeared while this manuscript was in press: Backov R, Morgan AN, Lane S, Perez-Cordero EE, Williams K, Meisel MW, Sanchez C, Talham DR (2002) Mol Cryst Liq Cryst 376:127

    Article  CAS  Google Scholar 

  129. A review of oxidic nanotubes and nanorods has been published while this manuscript was in press: Patzke GR, Krumeich F, Nesper R (2002) Angew Chem Int Ed 41:2446

    Article  CAS  Google Scholar 

  130. Here are few examples of reviews on the subject: a) Sinnott SB, Andrews R (2001) Crit Rev Solid State Mater Sciences 26:145; b) Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Chem Phys Chem 2:78; c) Rakov EG (2000) Uspekhi Khimii 69:41; d) Ajayan PM (1999) Chem Rev 99:1787

    Article  CAS  Google Scholar 

  131. a) Zhang QM, Li Y, Xu DS, Gu ZN (2001) J Mater Sci Lett 20:925; b) Zhu JJ, Liao XH, Zhao XN, Chen HY (2001) Mater Lett 49:91; c) Lin SW, Yue J, Gedanken A (2001) Adv Mater 13:656; d) Jana NR, Gearheart L, Murphy CJ (2001) Chem Comm 2001:617; e) Bhattacharyya S, Saha SK, Chakravorty D (2000) Appl Phys Lett 77:3770; f) Kyoung M, Lee M (1999) Opt Commun 171:145; g) Link S, El-Sayed MA (1999) J Phys Chem B 103:8410; h) Sloan J, Wright DM, Woo HG, Bailey S, Brown G, York APE, Coleman KS, Hutchison JL, Green MLH (1999) Chem Comm 1999:699; i) Zhou Y, Yu SH, Cui XP, Wang CY, Chen ZY (1999) Chem Mater 11:545; j) Korgel BA, Fitzmaurice D (1998) Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv Mat 10:661; k) Han YJ, Kim JM, Stucky GD (2000) Chem Mater 12:2068

    Article  CAS  Google Scholar 

  132. a) Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065; b) Mbindyo JKN, Reiss BD, Martin BR, Keating CD, Natan MJ, Mallouk TE (2001) Adv Mat 13:249; c) Wang BL, Yin SY, Wang GH, Buldum A, Zhao JJ (2001) Phys Rev Lett 86:2046; d) Ramsperger U, Uchihashi T, Nejoh H (2001) Appl Phys Lett 78:85; e) Yu JS, Kim JY, Lee S, Mbindyo JKN, Martin BR, Mallouk TE (2000) Chem Comm 2000:2445

    Article  CAS  Google Scholar 

  133. Nikoobakht, Wang ZL, El-Sayed MA (2000) J Phys Chem B 104:8635

    Article  CAS  Google Scholar 

  134. a) Wang XF, Zhang LD, Zhang J, Shi HZ, Peng XS, Zheng MJ, Fang J, Chen JL, Gao BJ (2001) J Phys D 34:418; b) Choi SH, Wang KL, Leung MS, Stupian GW, Presser N, Morgan BA, Robertson RE, Abraham M, King EE, Tueling MB, Chung SW, Heath JR, Cho SL, Ketterson JB (2000) J Vac Sci Technol A 18:1326

    Article  CAS  Google Scholar 

  135. Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I, Rao TN, Fujishima A (2001) Adv Mater 13:247

    Article  CAS  Google Scholar 

  136. a) Henry Y, Ounadjela K, Piraux L, Dubois S, George JM, Duvail JL (2001) Eur Phys J B 20:35; b) Cao HQ, Xu Z, Sang H, Sheng D, Tie CY (2001) Adv Mater 13:121; c) Yang SG, Zhu H, Ni G, Yu DL, Tang SL, Du YW (2000) J Phys D Appl Phys 33:2388; d) Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115

    Article  CAS  Google Scholar 

  137. Ounadjela K, Ferre R, Louail L, George JM, Maurice JL, Piraux L, Dubois S (1997) J Appl Phys 81:5455

    Article  CAS  Google Scholar 

  138. a) Molares MET, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Adv Mater 13:62; b) Peng LQ, Ju X, Wang SC, Xian DC, Chen H, He YJ (1999) Chin Phys Lett 16:126; c) Setlur AA, Lauerhaas JM, Dai JY, Chang RPH (1996) Appl Phys Lett 69:345; d) Peng LQ, Ju X, Wang SC, Xian DC, Chen H, He YJ (1999) Chin Phys Lett16:126

    Article  CAS  Google Scholar 

  139. Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon TJ (2000) Am Chem Soc 122:8581

    Article  CAS  Google Scholar 

  140. Zhang YF, Tang YH, Wang N, Lee CS, Bello I, Lee ST (2000) Phys Rev B 61:4518

    Article  CAS  Google Scholar 

  141. Tang CC, Fan SS, Li P, de la Chapelle ML, Dang HY (2001) J Cryst Growth 224:1171

    Article  Google Scholar 

  142. Gu Q, Dang HY, Cao J, Zhao JH, Fan SS (2000) Appl Phys Lett 76:3020; b) Wang N, Tang YH, Zhang YF, Lee CS, Bello I, Lee ST (1999) Chem Phys Lett 299:237; c) Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58(N24):R16024

    Article  CAS  Google Scholar 

  143. a) Krumeich F, Muhr HJ, Niederberger M, Bieri F, Nesper R (2000) Z Anorg Allg Chem 626:2208; b) Reinoso JM, Muhr HJ, Krumeich F, Bieri F, Nesper R (2000) Helv Chim Acta 83:1724; c) Niederberger M, Muhr HJ, Krumeich F, Bieri F, Gunther D, Nesper R (2000) Chem Mater 12:1995; d) Muhr HJ, Krumeich F, Schonholzer UP, Bieri F, Niederberger M, Gauckler LJ, Nesper R (2000) Adv Mater 12:231; e) Millet P, Henry JY, Mila F, Galy J (1999) J Solid State Chem 147:67678; f) Krumeich F, Muhr HJ, Niederberger M, Bieri F, Schnyder B, Nesper R (1999) J Am Chem Soc 121(N36):8324; g) Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) J Electrochem Soc 146:278, 083; h) Spahr ME, Bitterli P, Nesper R, Muller M, Krumeich F, Nissen HU (1998) Angew Chem Int Ed 37:1263; i) Pillai KS, Krumeich F, Muhr HJ, Niederberger M, Nesper R (2001) Solid State Ionics 141:185

    Article  CAS  Google Scholar 

  144. Lakshmi BB, Patrissi CJ, Martin CR (1997) Chem Mater 9:2544

    Article  CAS  Google Scholar 

  145. Satishku BC, Govindaraj A, Nath M, Rao CNR (2000) J Mater Chem 10:2115–2119

    Article  Google Scholar 

  146. a) Zhang M, Bando Y, Wada K (2001) J Mater Res 16:1408; b) Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160–3163; c) Hoyer P (1996) Langmuir 12:1411; d) Seo DS, Lee JK, Kim H (2001) J Cryst Growth 229:428; e) Li XH, Zhang XG, Li HL (2001) Chem J Chin Univ 22:130; f) Zhang M, Bando Y, Wada K (2001) J Mater Sci Lett 20:167; g) Zhang SL, Zhou JF, Zhang ZJ, Du ZL, Vorontsov AV, Jin ZS (2000) Chin Sci Bull 45:1533; h) Khitrov G (2000) MRS Bull 25:3; i) Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) J Mater Chem 9:2971; j) Lei Y, Zhang LD, Fan JC (2001) Chem Phys Lett 338:231; k) Lei Y, Zhang LD (2001) J Mater Res 16:1138; l) Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Appl Phys Lett 78:1125; m) Hulteen JC, Martin CR (1997) J Mater Chem 7:1075; n) Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H, Shinkai S (2000) Chem Mater 12:1523

    Article  CAS  Google Scholar 

  147. Lakshmi BB, Dorhout PK, Martin CR (1997) Chem Mater 9:857

    Article  CAS  Google Scholar 

  148. Zheng MJ, Li GH, Zhang XY, Huang SY, Lei Y, Zhang LD (2001) Chem Mater 13:3859

    Article  CAS  Google Scholar 

  149. a) Pu L, Bao XM, Zou JP, Feng D (2001) Angew Chem Int Ed 40:1490; b) Zheng MJ, Zhang LD, Zhang XY, Zhang J, Li GH (2001) Chem Phys Lett 334:298

    Article  CAS  Google Scholar 

  150. Zheng MJ, Zhang LD, Zhang XY, Zhang J, Li GH (2001) Chem Phys Lett 334(N4/6):298

    Article  CAS  Google Scholar 

  151. a) Li Y, Cheng GS, Zhang LD (2000) J Mater Res 15:2305; b) Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD(2001) Adv Mater 13:113; c) Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Appl Phys Lett 78:407–409; d) Li Y, Cheng GS, Zhang LD (2000) J Mater Res 15:2305; e) Li Y, Meng GW, Zhang LD, Phillipp F (2000) Appl Phys Lett 76:2011

    Article  CAS  Google Scholar 

  152. Tang CC, Fan SS, de la Chapelle ML, Li P (2001) Chem Phys Lett 333:12

    Article  CAS  Google Scholar 

  153. a) Zhang M, Bando Y, Wada K, Kurashima K (1999) J Mater Sci Lett 18:1911; b) Chang HJ, Chen YF, Lin HP, Mou CY (2001) Appl Phys Lett 78:3791; c) Wang LZ, Tomura S, Ohashi F, Maeda M, Suzuki M, Inukai K (2001) J Mater Chem 11:1465; d) Wu XC, Song WH, Wang KY, Hu T, Zhao B, Sun YP, Du JJ (2001) Chem Phys Lett 336:53; e) Liu ZQ, Xie SS, Sun LF, Tang DS, Zhou WY, Wang CY, Liu W, Li YB, Zou XP, Wang G (2001) J Mater Res 16:683–686; f) Wang ZL, Gao RPP, Gole JL, Stout JD (2000) Adv Mater 12:1938; g) Harada M, Adachi M (2000) Adv Mater 12:839; h) Lin HP, Mou CY, Liu SB (2000) Adv Mater 12:103; i) Zhang M, Bando Y, Wada K, Kurashima K (1999) J Mater Sci Lett 18:1911; j) Adachi M, Harada T, Harada M (1999) Langmuir 15:7097; k) Zhang M, Bando Y, Wada K (2000) J Mater Res 15:387

    Article  CAS  Google Scholar 

  154. Park GS, Choi WB, Kim JM, Choi YC, Lee YH, Lim CB (2000) J Cryst Growth 220:494

    Article  CAS  Google Scholar 

  155. Wang WH, Zhan YJ, Wang GH (2001) Chem Comm 2001:727

    Google Scholar 

  156. Vayssieres L, Beermann N, Lindquist SE, Hagfeldt A (2001) Chem Mater 13:233

    Article  CAS  Google Scholar 

  157. Kwan S, Kim F, Akana J, Yang PD (2001) Chem Comm 2001:447

    Article  CAS  Google Scholar 

  158. Zhang YF, Tang YH, Duan XF, Zhang Y, Lee CS, Wang N, Bello I, Lee ST (2000) Chem Phys Lett 323:180

    Article  CAS  Google Scholar 

  159. a) Remskar M, Mrzel A, Skraba Z, Jesih A, Ceh M, Demsar J, Stadelmann P, Levy F, Mihailovic D (2001) Science 292:479; b) Hsu WK, Chang BH, Zhu YQ, Han WQ, Terrones H, Terrones M, Grobert N, Cheetham AK, Kroto HW, Walton DRM (2000) J Am Chem Soc122:10155; c) Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T (2000) Phys Rev Lett 85:146; d) Margulis L, Dluzewski P, Feldman Y, Tenne R (1996) J Microsc 181:68; e) Zhang Q, Huang RB, Liu ZY, Zheng LS (1995) Chem J Chin Univ16:1624; f) Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222; g) Mastai Y, Homyonfer M, Gedanken A, Hodes G (1999) Adv Mater 11:1010

    Article  CAS  Google Scholar 

  160. Nath M, Govindaraj A, Rao CNR (2001) Adv Mater 13:283; b) Remskar M, Skraba Z, Stadelmann P, Levy F (2000) Adv Mater 12:814; c) Remskar M, Skraba Z, Sanjines R, Levy F (1999) Surf Rev Lett 6:1283; d) Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) J Am Chem Soc 118:5362

    Article  CAS  Google Scholar 

  161. Homyonfer M, Alperson B, Rosenberg Y, Sapir L, Cohen SR, Hodes G, Tenne R (1997) J Am Chem Soc 119:2693

    Article  CAS  Google Scholar 

  162. a) Zhu YQ, Hsu WK, Terrones H, Grobert N, Chang BH, Terrones M, Wei BQ, Kroto HW, Walton DRM, Boothroyd CB, Kinloch I, Chen GZ, Windle AH, Fray DJ (2000) J Mater Chem 10:2570; b) Rothschild A, Sloan J, Tenne R (2000) J Am Chem Soc 122(N21):5169; c) Zhu YQ, Hsu WK, Grobert N, Chang BH, Terrones M, Terrones H, Kroto HW, Walton DRM, Wei BQ (2000) Chem Mater 12:1190; d) Mackie EB, Galvan DH, Adem E, Talapatra S, Yang GL, Migone AD (2000) Adv Mater 12:495; e) Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T (2000) Solid State Commun 114:245; f) Rothschild A, Frey GL, Homyonfer M, Tenne R, Rappaport M (1999) Synthesis of bulk WS2 nanotube phases. Mater Res Innovations 3:145

    Article  CAS  Google Scholar 

  163. Tsirlina T, Feldman Y, Homyonfer M, Sloan J, Hutchison JL, Tenne R (1998) Fuller Sci Technol 6:157

    CAS  Google Scholar 

  164. Zhu YQ, Hsu WK, Terrones M, Firth S, Grobert N, Clark RJH, Kroto HW, Walton DRM (2001) Chem Commun 2001:121

    Article  Google Scholar 

  165. a) Hsu WK, Zhu YQ, Firth S, Terrones M, Terrones H, Trasobares S, Clark RJH, Kroto HW, Walton DRM (2001) Carbon 39:1107; b) Hsu WK, Zhu YQ, Boothroyd CB, Kinloch I, Trasobares S, Terrones H, Grobert N, Terrones M, Escudero R, Chen GZ, Colliex C, Windle AH, Fray DJ, Kroto HW, Walton DRM (2000) Chem Mater 12:3541

    Article  CAS  Google Scholar 

  166. Nath M, Rao CNR (2001) J Am Chem Soc 123:4841

    Article  CAS  Google Scholar 

  167. Zhang WX, Yang ZH, Zhan JH, Yang L, Yu WC, Zhou GE, Qian YT (2001) Mater Lett 47:367

    Article  CAS  Google Scholar 

  168. Li W, Kalia RK, Vashishta P (1996) Phys Rev Lett 77:2241

    Article  CAS  Google Scholar 

  169. a) Sapp SA, Lakshmi BB, Martin CR (1999) Adv Mater 11:402; b) Prieto AL, Sander MS, Martín-González MS, Gronsky R, Sands T, Stacy AM (2001) J Am Chem Soc 123:7160

    Article  CAS  Google Scholar 

  170. a) Davidson P, Gabriel JC, Levelut AM, Batail P (1993) Nematic liquid crystalline mineral polymers. Adv Mater 5:665; b) Davidson P, Gabriel JC, Levelut AM, Batail P (1993) Europhys Lett 21:317; c) Messer B, Song JH, Yang PD (2000) J Am Chem Soc 122:10, 232

    Article  CAS  Google Scholar 

  171. a) Wang SH, Yang SH (2000) Adv Mater Opt Electron 10:39; b) Wang SH, Yang SH (2000) Chem Phys Lett 322:567

    Article  CAS  Google Scholar 

  172. Dloczik L, Engelhardt R, Ernst K, Fiechter S, Sieber I, Konenkamp R (2001) App Phys Lett 78:3687

    Article  CAS  Google Scholar 

  173. Xu DS, Xu YJ, Chen DP, Guo GL, Gui LL, Tang YQ (2000) Chem Phys Lett 325; b) Li Y, Xu DS, Zhang QM, Chen DP, Huang FZ, Xu YJ, Guo GL, Gu ZN (1999) Chem Mater 11:3433

    Google Scholar 

  174. Shen CM, Zhang XG, Ki HL (2001) Mater Sci Eng A 303:19

    Article  Google Scholar 

  175. a) Rubio A, Corkill JL, Cohen ML (1994) Phys Rev B 49:5081; b) Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966; c) Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Phys Rev Lett 76:4737; d) Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F (1997) Science 278:653; e) Cumings J, Zettl A (2000) Chem Phys Lett 316:211

    Article  CAS  Google Scholar 

  176. Shimizu Y, Moriyoshi Y, Komatsu S, Ikegami T, Ishigaki T, Sato T, Bando Y (1998) Thin Solid Films 316:178; b) Shimizu Y, Moriyoshi Y, Tanaka H, Komatsu S (1999) App Phys Lett 75:929

    Article  CAS  Google Scholar 

  177. a) Han WQ, Bando Y, Kurashima K, Sato T (1998) Appl Phys Lett 73:3085; b) Han WQ, Bando Y, Kurashima K, Sato T (1999) Chem Phys Lett 299:368; c) Golberg D, Bando Y, Han W, Kurashima K, Sato T (1999) Chem Phys Lett 308:337; d) Han WQ, Redlich P, Ernst F, Ruhle M (1999) Chem Mater 11:3620; e) Golberg D, Bando Y, Bourgeois L, Kurashima K, Sato T (2000) Carbon 38:2017; f) Golberg D, Bando Y, Kurashima K, Sato T (2000) Chem Phys Lett 323:185

    Article  CAS  Google Scholar 

  178. a) Chen Y, Gerald JF, Williams JS, Bulcock S (1999) Chem Phys Lett 299:260; b) Chen Y, Chadderton LT, FitzGerald J, Williams JS (1999) Appl Phys Lett 74:2960

    Article  CAS  Google Scholar 

  179. Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE (2000) Chem Mater 12:1808

    Article  CAS  Google Scholar 

  180. Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K (2000) Chem Phys Lett 324:359

    Article  CAS  Google Scholar 

  181. a) Li JY, Chen XL, Qiao ZY, Cao YG, He M, Xu T (2000) Appl Phys A 71:349; b) Chen CC, Yeh CC (2000) Adv Mater 12:738; c) Han WQ, Fan SS, Li QQ, Hu YD (1997) Science 277:1287; d) Chen et al. (2001) J Am Chem Soc123:2791; e) Li ZJ, Chen XL, Li HJ, Tu QY, Yang Z, Xu YP, Hu BQ (2001) Appl Phys A 72:629; f) He MQ, Minus I, Zhou PZ, Mohammed SN, Halpern JB, Jacobs R, Sarney WL, Salamanca-Riba L, Vispute RD (2000) Appl Phys Lett 77:3731; g) Chen XL, Li JY, Cao YG, Lan YC, Li H, He M, Wang CY, Zhang Z, Qiao ZY (2000) Adv Mater 12:1432; h) Tang CC, Fan SS, Dang HY, Li P, Liu YM (2000) Appl Phys Lett 77:1961; i) Peng HY, Zhou XT, Wang N, Zheng YF, Liao LS, Shi WS, Lee CS, Lee ST (2000) Chem Phys Lett 327:263; j) Cheng GS, Chen SH, Zhu XG, Mao YQ, Zhang LD (2000) Mater Sci Eng A 286:165; k) LilientalWeber Z, Chen Y, Ruvimov S, Washburn J (1997) Phys Rev Lett 79:2835; l) Li JY, Chen XL, Qiao ZY, Cao YG, Lan YC (2000) J Cryst Growth 213:408; m) Cheng GS, Zhang LD, Chen SH, Li Y, Li L, Zhu XG, Zhu Y, Fei GT, Mao YQ (2000) J Mater Res 15:347; n) Duan XF, Lieber CM (2000) J Am Chem Soc 122:188; o)Lee SM, Lee YH, Hwang YG, Elsner J, Porezag D, Frauenheim T (1999) Phys Rev B 60:7788; p) Zhu J, Fan S (1999) J Mater Res 14:1175; q) Lee SM, Lee YH, Hwang YG, Lee CJ (1999) J Korean Phys Soc 34:S253; r) Bedarev DA, Kogitskii SO, Lundin VV (1999) Tech Phys Lett 25:385

    Article  CAS  Google Scholar 

  182. a) Han WQ, Fan SS, Li QQ, Gu BL, Zhang XB, Yu DP (1997) Appl Phys Lett 71:2271; b) Wu XC, Song WH, Zhao B, Huang WD, Pu MH, Sun YP, Du JJ (2000) Solid State Commun 115:683

    Article  CAS  Google Scholar 

  183. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Nature 409:66

    Article  CAS  Google Scholar 

  184. Duan X, Lieber CM (2000) Adv Mater 12:298

    Article  CAS  Google Scholar 

  185. Shi WS, Zheng YF, Wang N, Lee CS, Lee ST (2001) Appl Phys Lett 78:3304–3306

    Article  CAS  Google Scholar 

  186. a) Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) J Catal 200:400; b) Li YB, Xie SS, Wei BQ, Lian GD, Zhou WY, Tang DS, Zou XP, Liu ZQ, Wang G (2001) Solid State Commun 119:51; c) Gao YH, Bando Y, Kurashima K, Sato T (2001) Scr Mater 44:1941; d) Zhang YJ, Wang NL, He RR, Chen XH, Zhu (2001) J Solid State Commun 118:595; e) Wu XC, Song WH, Huang WD, Pu MH, Zhao B, Sun YP, Du JJ (2001) Mater Res Bull 36:847; f) Li YB, Xie SS, Zou XP, Tang DS, Liu ZQ, Zhou WY, Wang G (2001) J Cryst Growth 223:125; g) Shi WS, Zheng YF, Peng HY, Wang N, Lee CS, Lee ST (2000) J Am Ceram Soc 83:3228; h) Wang ZL, Dai ZR, Gao RP, Bai ZG, Gole JL (2000) Appl Phys Lett 77:3349; i) Liang CH, Meng GW, Zhang LD, Wu YC, Cui Z (2000) Chem Phys Lett 329:323; j) Pan ZW, Lai HL, Au FCK, Duan XF, Zhou WY, Shi WS, Wang N, Lee CS, Wong NB, Lee ST, Xie SS (2000) Adv Mater 12:1186; k) Hu JQ, Lu QK, Tang KB, Deng B, Jiang RR, Qian YT, Yu WC, Zhou GE, Liu XM, Wu JX (2000) J Phys Chem B 104:5251; l) Zhou XT, Wang N, Au FCK, Lai HL, Peng HY, Bello I, Lee CS, Lee ST (2000) Mater Sci Eng A 286:119; m) Tang CC, Fan SS, Dang HY, Zhao JH, Zhang C, Li P, Gu Q (2000) J Cryst Growth 210:595; n) Zhou XT, Lai HL, Peng HY, Au FCK, Liao LS, Wang N, Bello I, Lee CS, Lee ST (2000) Chem Phys Lett 318:58; o) Lai HL, Wong NB, Zhou XT, Peng HY, Au FCK, Wang N, Bello I, Lee CS, Lee ST, Duan XF (2000) Appl Phys Lett 76:294; p) Lu QY, Hu JQ, Tang KB, Qian YT, Zhou G, Liu XM, Zhu JS (1999) Appl Phys Lett 75:507; q) Zhou XT, Wang N, Lai HL, Peng HY, Bello I, Wong NB, Lee CS, Lee ST (1999) Appl Phys Lett 74:3942; r) Meng GW, Zhang LD, Mo CM, Zhang SY, Qin Y, Feng SP, Li HJ (1998) J Mater Res 13:2533; s) Han WQ, Fan SS, Li QQ, Liang WJ, Gu BL, Yu DP (1997) Chem Phys Lett 265:374

    Article  CAS  Google Scholar 

  187. a) Liang CH, Meng GW, Chen W, Wang YW, Zhang LD (2000) J Cryst Growth 220:296; b) Qi SR, Huang XT, Gan ZW, Ding XX, Cheng Y (2000) J Cryst Growth 219:485; c) Gao Y, Liu J, Shi M, Elder SH, Virden JW (1999) Appl Phys Lett 74:3642

    Article  CAS  Google Scholar 

  188. a) Fukunaga A, Chu S, McHenry MEJ (1999) Mater Sci Lett 18:431; b) Nesting DC, Kouvetakis J, Smith DJ (1999) Appl Phys Lett 74:958; c) Fukunaga A, Chu SY, McHenry ME (1998) J Mater Res 13:2465; d) Wong EW, Nor BW, Burns LD, Lieber CM (1996) Chem Mater 8:2041; e) Ata M, Hudson AJ, Yamaura K, Kurihara K (1995) Jap J Appl Phys 34:4207; f) Liu MG, Cowley JM (1995) Carbon 33:749; g) Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM (1995) Nature 375:769; h) Liu MQ, Cowley JM (1995) Carbon 33:225; i) Ata M, Kijima Y, Hudson AJ, Imoto H, Matsuzawa N, Takahashi N (1994) Adv Mater 6:590; j) Seraphin S, Zhou D, Jiao J, Withers JC, Loutfy R (1993) Nature 362:503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabriel, JC.P., Davidson, P. (2003). Mineral Liquid Crystals from Self-Assembly of Anisotropic Nanosystems. In: Antonietti, M. (eds) Colloid Chemistry I. Topics in Current Chemistry, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36408-0_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-36408-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00415-8

  • Online ISBN: 978-3-540-36408-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics