Advertisement

A Parallel DFA Minimization Algorithm

  • Ambuj Tewari
  • Utkarsh Srivastava
  • P. Gupta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2552)

Abstract

In this paper,we have considered the state minimization problem for Deterministic Finite Automata (DFA). An efficient parallel algorithm for solving the problem on an arbitrary CRCW PRAM has been proposed. For n number of states and k number of inputs in Σ of the DFA to be minimized,the algorithm runs in O(kn log n) time and uses O( n/log n ) processors.

Keywords

Parallel Algorithm Sequential Algorithm Input Symbol Automaton Theory Block Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aho A. V., Hopcroft J.E. and Ullman J. D.: The design and analysis of computer algorithms. Addison-Wesley,Reading, Massachusetts (1974) 35, 36Google Scholar
  2. [2]
    Blum N.: An O(n log n) implementation of the standard method of minimizing n-state finite automata. Information Processing Letters 57 (1996) 65–6935zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Cho S. and Huynh D.T.: The parallel complexity of coarsest set partition problems. Information Processing Letters 42 (1992) 89–94 35, 36zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Huffman D.A.: The Synthesis of Sequential Switching Circuits. Journal of Franklin Institute 257 (1954) 161–190 34CrossRefMathSciNetGoogle Scholar
  5. [5]
    Hopcroft J.E.: An n log n algorithm for minimizing states in a finite automata. Theory of Machines and Computation,A cademic Press (1971) 189–19635Google Scholar
  6. [6]
    Hopcroft J.E. and Ullman J.D.: Introduction to automata theory,languages, and computation. Addison-Wesley,Reading, Massachusetts (1979) 34Google Scholar
  7. [7]
    Jaja J. and Kosaraju S.R.: Parallel algorithms for planar graph isomorphism and related problems. IEEE Transactions on Circuits and Systems 35 (1988) 304–311 35zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Jaja J. and Ryu K.W.: An Efficient Parallel Algorithm for the Single Function Coarsest Partition Problem. Theoretical Computer Science 129 (1994) 293–307 35zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Matias Y. and Vishkin U.: On parallel hashing and integer sorting. Journal of Algorithms 4 (1991) 573–606 37, 38CrossRefMathSciNetGoogle Scholar
  10. [10]
    Moore E. F.: Gedanken-experiments on sequential circuits. Automata Studies, Princeton University Press (1956) 129–153 34Google Scholar
  11. [11]
    Paige R., Tarjan R. E. and Bonic R.: A linear time solution to the single function coarsest partition problem. Theoretical Computer Science 40 (1985) 67–84 36zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Ravikumar B. and Xiong X.: A parallel algorithm for minimization of finite automata. Proceedings of the 10th International Parallel Processing Symposium, Honululu,Hawaii (1996) 187–191 35Google Scholar
  13. [13]
    Srikant Y.N.: A parallel algorithm for the minimization of finite state automata. International Journal Computer Math. 32 (1990) 1–11 35zbMATHCrossRefGoogle Scholar
  14. [14]
    Vardi M.: Nontraditional applications of automata theory. Lecture Notes in Computer Science,Springer-Verlag 789 (1994) 575–597 34Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ambuj Tewari
    • 1
  • Utkarsh Srivastava
    • 1
  • P. Gupta
    • 1
  1. 1.Department of Computer Science & EngineeringIndian Institute of Technology KanpurKanpurINDIA

Personalised recommendations