Skip to main content

Thermal Instability and Magnetic Pressure in the Turbulent Interstellar Medium

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 614))

Abstract

We review recent results on the nonlinear development of thermal instability (TI) in the context of the turbulent atomic interstellar medium (ISM), in which correlated density and velocity fluctuations are present, as well as forces other than the thermal pressure gradient. First, we present a brief summary of the linear theory, remarking that, in the atomic ISM, the condensation mode is unstable but the wave mode is stable at small scales. Next, we revisit the growth of isolated entropy perturbations in initially unstable gas, as a function of the ratio of the cooling to the dynamical crossing times η. The time for the dynamical transient state to subside ranges from 4 to 30 Myr for initial density perturbations of 20% and sizes 3 to 75 pc. When η≪ 1, the condensation produces locally supersonic motions and a shock propagates off the condensation, bringing the surrounding medium out of thermal equilibrium. Third, we consider the evolution of velocity perturbations, maintained by a random forcing, representing turbulent energy injection to the ISM from stellar sources. These perturbations correspond to the wave mode, and are stable at moderate amplitudes and small scales, as confirmed numerically. We then consider the behavior of magnetic pressure in turbulent regimes. Various observational and numerical results suggest that the magnetic pressure does not correlate well with density at low and intermediate densities. We propose that this is a consequence of the slow and fast modes of nonlinear MHD waves being characterized by different scalings of the magnetic field strength versus density. This lack of correlation suggests that, in fully turbulent regimes, the magnetic field may not be a very efficient source of pressure, and that polytropic descriptions of magnetic pressure are probably not adequate. Finally, we discuss simulations of the ISM (and resolution issues) tailored to investigate the possible existence of significant amounts of gas in the “lukewarm” temperature range between the warm and cold stable phases. The mass fraction in this range increases, and the phase segregation decreases, as smaller scales are considered. We attribute this to two facts: the enhanced stability of moderate, adiabatic-like velocity fluctuations with η≫ 1 and the recycling of gas from the dense to the diffuse phase by stellar energy injection. Moreover, the magnetic field is not strongly turbulent there, possibly providing additional stability. We conclude by suggesting that the gas with unstable temperatures can be observationally distinguished through simultaneous determination of two of its thermodynamic variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Avila-Reese, E. Vázquez-Semadeni: ApJ 553, 645 (2001)

    Article  ADS  Google Scholar 

  2. S.A. Balbus: ‘Thermal Instability’. In: The Physics of the Interstellar Medium and Intergalactic Medium, ed. by A. Ferrara, C.F. McKee, C. Heiles, P.R. Shapiro (Astronomical Society of the Pacific, San Francisco 1995), p. 328

    Google Scholar 

  3. J. Ballesteros-Paredes, E. Vázquez-Semadeni, J. Scalo: ApJ 515, 286 (1999)

    Article  ADS  Google Scholar 

  4. T.M. Bania, J.G. Lyon: ApJ 239, 173 (1980)

    Article  ADS  Google Scholar 

  5. M.C. Begelman, C.F. McKee: ApJ 338, 375 (1990)

    Article  ADS  Google Scholar 

  6. A. Brandenburg: ApJ 550, 824 (2001)

    Google Scholar 

  7. W. Brinkmann, S. Massaglia, E. Müller: Astron. Ap. 237, 536 (1999)

    ADS  Google Scholar 

  8. A. Burkert, D.N.C. Lin: ApJ 537, 270 (2000)

    Article  ADS  Google Scholar 

  9. D. Chappell, J. Scalo: MNRAS 325, 1 (2001)

    Article  ADS  Google Scholar 

  10. W.-H. Chiang, K.H. Prendergast: ApJ 297, 507 (1985)

    Article  ADS  Google Scholar 

  11. W.-H. Chiang, J.N. Bregman: ApJ 328, 427 (1988)

    Article  ADS  Google Scholar 

  12. A. Dalgarno, R.A. McCray: Ann. Rev. Astron. Ap. 10, 375 (1972)

    Article  ADS  Google Scholar 

  13. L.P. David, J.N. Bregman, C.G. Seab: ApJ 329, 66 (1988)

    Article  ADS  Google Scholar 

  14. M.A. de Avillez: MNRAS 315, 479 (2000)

    Article  ADS  Google Scholar 

  15. J.M. Dickey, E.E. Salpeter, Y. Terzian: ApJ 211, L77 (1977)

    Article  ADS  Google Scholar 

  16. B.G. Elmegreen:, ApJ 378, 139 (1991)

    Article  ADS  Google Scholar 

  17. B.G. Elmegreen: ‘The Origin and Evolution of Giant Molecular Clouds’. In: The Physics of Star Formation and Early Stellar Evolution, ed. by C.J. Lada, N.D. Kylafis (Kluwer, Dordrecht, 1991), p. 35

    Google Scholar 

  18. B.G. Elmegreen: ApJ 419, L29 (1993)

    Article  ADS  Google Scholar 

  19. B.G. Elmegreen: ApJ 433, 39 (1994)

    Article  ADS  Google Scholar 

  20. B.G. Elmegreen: ApJ 480, 674 (1997)

    Article  ADS  Google Scholar 

  21. K.M. Ferriére: Rev. Mod. Phys. 73, 1031 (2001)

    Article  ADS  Google Scholar 

  22. G.B. Field: ApJ 142, 531 (1965)

    Article  ADS  Google Scholar 

  23. G.B. Field, D.W. Goldsmith, H.J. Habing: ApJ 155, L149 (1969)

    Article  ADS  Google Scholar 

  24. E.L. Fitzpatrick, L. Spitzer: ApJ, 475, 623 (1997)

    Article  ADS  Google Scholar 

  25. A. Gazol, T. Passot: ApJ 518, 748 (1999)

    Article  ADS  Google Scholar 

  26. A. Gazol, E. Vázquez-Semadeni, F.J. Sánchez-Salcedo, J. Scalo: ApJ 557, 121 (2001) (Paper IV)

    Article  ADS  Google Scholar 

  27. H. Gerola, M. Kafatos, R. McCray, R.: ApJ 189, 55 (1974)

    Article  ADS  Google Scholar 

  28. J.P.E. Gerritsen, V. Icke: Astron. Ap. 325, 972 (1997)

    ADS  Google Scholar 

  29. D.W. Goldsmith: ApJ 161, 41 (1970)

    Article  ADS  Google Scholar 

  30. C. Heiles: ApJ 551, L105 (2001)

    Article  ADS  Google Scholar 

  31. P. Hennebelle, M. Pérault: Astron. Ap. 351, 309 (1999)

    ADS  Google Scholar 

  32. P. Hennebelle, M. Pérault: Astron. Ap. 359, 1124 (2000)

    ADS  Google Scholar 

  33. J.H. Hunter: ApJ 161, 451 (1970)

    Article  ADS  Google Scholar 

  34. J.H. Hunter: ApJ 166, 453 (1971)

    Article  ADS  Google Scholar 

  35. E.B. Jenkins, T.M. Tripp: ApJS 137, 297 (2001)

    Article  ADS  Google Scholar 

  36. P.M.W. Kalberla, U.J. Schwarz, W. M. Goss: Astron. Ap. 144, 27 (1985)

    ADS  Google Scholar 

  37. H. Kang, P.R. Shapiro, S.M. Fall, M.J. Rees: ApJ, 363, 488 (1990)

    Article  ADS  Google Scholar 

  38. H. Kang, G. Lake, D. Ryu: J. Kor. Astron. Soc. 33, 111 2000

    ADS  Google Scholar 

  39. J. Kim, D. Balsara, M.-M. Mac Low: J. Korean Astron. Soc. 34, 333 (2001)

    ADS  Google Scholar 

  40. P. Kornreich, J. Scalo: ApJ 531, 366 (2000)

    Article  ADS  Google Scholar 

  41. M.J. Korpi, A. Brandenburg, A. Shukurov, I. Tuominen, °A Nordlund: ApJ 514, L99 (1999)

    Article  ADS  Google Scholar 

  42. H. Koyama, S.-I. Inutsuka: ApJ 532, 980 (2000)

    Article  ADS  Google Scholar 

  43. H. Koyama, S.-I. Inutsuka: ApJ 564L, 97 (2001)

    Article  ADS  Google Scholar 

  44. A. Kritsuk: Sov. Astron. 34, 21 (1990)

    MATH  ADS  Google Scholar 

  45. A. Kritsuk, M.L. Norman: ApJ 569L, 127 (2002)

    Article  ADS  Google Scholar 

  46. L.D. Landau, E.M. Lifshitz: Fluid Mechanics, 2nd ed. (Pergamon Press, Oxford, 1987)

    MATH  Google Scholar 

  47. K. R. Lang Astrophysical Formulae vol. I, 3th edn., (Springer-Verlag, Berlin, 1999)

    Google Scholar 

  48. A. Lioure, J.-P. Chiéze: Astron. Ap. 235, 379 (1990)

    ADS  Google Scholar 

  49. Y. Lithwick, P. Goldreich: ApJ 562, 279 (2001)

    Article  ADS  Google Scholar 

  50. M. Loewenstein: ApJ 349, 471 (1990)

    Article  ADS  Google Scholar 

  51. M.-M. Mac Low, D. Balsara, J. Kim, M. de Avillez: astro-ph/0106509

    Google Scholar 

  52. G. Mann: J. Plasma Phys. 53, 109 (1995)

    Article  ADS  Google Scholar 

  53. C.F. McKee, J.P. Ostriker: ApJ 218, 148 (1977)

    Article  ADS  Google Scholar 

  54. B. Meerson, P.V. Sasorov: Sov. Phys. JETP Lett. 65, 300 (1987)

    Google Scholar 

  55. B. Meerson: Rev. Mod. Phys. 68, 215 (1996)

    Article  ADS  Google Scholar 

  56. S.L. Mufson: ApJ 193, 561 (1974)

    Article  ADS  Google Scholar 

  57. S.L. Mufson: ApJ 202, 372 (1975)

    Article  ADS  Google Scholar 

  58. S.D. Murray, D.N.C. Lin: ApJ 339,933 (1989)

    Article  ADS  Google Scholar 

  59. S.D. Murray, D.N.C. Lin: ApJ 363, 50 (1990)

    Article  ADS  Google Scholar 

  60. C.A. Norman, A. Ferrara: ApJ 467, 280 (1996)

    Article  ADS  Google Scholar 

  61. E.E. Oran, J.T. Mariska, J.P. Boris: ApJ 254, 349 (1982)

    Article  ADS  Google Scholar 

  62. E.C. Ostriker, J.M. Stone, C.F. Gammie: ApJ 546, 980 (2001)

    Article  ADS  Google Scholar 

  63. P. Padoan, °A Nordlund: ApJ 526, 279 (1999)

    Article  ADS  Google Scholar 

  64. A. Parravano: ApJ 172, 280 (1987)

    ADS  Google Scholar 

  65. E.N. Parker: ApJ 117, 431 (1953)

    Article  ADS  Google Scholar 

  66. T. Passot, E. Vázquez-Semadeni, A. Pouquet: ApJ 455, 536 (1995)

    Article  ADS  Google Scholar 

  67. T. Passot, E. Vázquez-Semadeni: submitted to Astron. Ap. (2002) (Paper II)

    Google Scholar 

  68. S.B. Pikel’ner: Sov. Astron. 11, 737 (1968)

    ADS  Google Scholar 

  69. A. Rosen, J.N Bregman: ApJ 440, 634 (1995)

    Article  ADS  Google Scholar 

  70. P.V. Sasorov: Sov. Astron. Lett. 14, 129 (1988)

    ADS  Google Scholar 

  71. F.J. Sánchez-Salcedo, A. Brandenburg: Mon. Not. Royal Astron. Soc. 322, 67 (2001)

    Article  ADS  Google Scholar 

  72. F.J. Sánchez-Salcedo, E. Vázquez-Semadeni, A. Gazol: ApJ submitted (2002) (Paper I)

    Google Scholar 

  73. J. Scalo, D. Chappell: MNRAS 310, 1 (1999)

    Article  ADS  Google Scholar 

  74. J. Schwarz, R. McCray, R.F. Stein: ApJ 175, 673 (1972)

    Article  ADS  Google Scholar 

  75. J.A. Sellwood, S.A. Balbus: ApJ 511, 660 (1999)

    Article  ADS  Google Scholar 

  76. F.H. Shu: The Physics of Astrophysics. Vol. II: Gas Dynamics, (University Science Books, Sausalito, 1992)

    Google Scholar 

  77. L. Spitzer, E.L. Fitzpatrick: ApJ 445, 196 (1995)

    Article  ADS  Google Scholar 

  78. E. Vázquez-Semadeni, T. Passot, A. Pouquet: ApJ 441, 702 (1996)

    Article  Google Scholar 

  79. E. Vázquez-Semadeni, T. Passot, A. Pouquet: ApJ 473, 881 (1996)

    Article  ADS  Google Scholar 

  80. E. Vázquez-Semadeni, A. Gazol, J. Scalo: ApJ 540, 271 (2000) (Paper III)

    Article  ADS  Google Scholar 

  81. K. Wada, M. Spaans, S. Kim: ApJ 540, 797 (2000)

    Article  ADS  Google Scholar 

  82. M.G. Wolfire, D. Hollenbach, C.F. McKee, A.G.G.M. Tielens, E.L.O. Bakes: ApJ 443, 152 (1995)

    Article  ADS  Google Scholar 

  83. Ya. B. Zel’dovich, S.B. Pikel’ner: Sov. Phys. JETP 29, 170 (1969)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vázquez-Semadeni, E., Gazol, A., Passot, T., Sánchez-Salcedo, J. (2003). Thermal Instability and Magnetic Pressure in the Turbulent Interstellar Medium. In: Falgarone, E., Passot, T. (eds) Turbulence and Magnetic Fields in Astrophysics. Lecture Notes in Physics, vol 614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36238-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36238-X_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00274-1

  • Online ISBN: 978-3-540-36238-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics