Skip to main content

Observations of Interstellar Magnetic Fields

  • Chapter
  • First Online:
Turbulence and Magnetic Fields in Astrophysics

Part of the book series: Lecture Notes in Physics ((LNP,volume 614))

Abstract

This article describes how interstellar magnetic fields are detected, measured, and mapped, the results of such observations, and the role played by interstellar magnetic fields in the physics of the interstellar medium. A goal of the observations is the measurement of the morphology and strengths of the uniform (B u) and random (B r) components of magnetic fields. Observational techniques probe either the component of B parallel to the line of sight (B‖) or in the plane of the sky (B⊥). Tracers of B‖ are Faraday rotation of the position angle of linearly polarized radiation and Zeeman splitting of spectral lines. Tracers of B⊥ are the strength of synchrotron radiation and linear polarization of synchrotron radiation and of emission or absorption from dust and spectral lines. Starlight polarization shows that on large spatial scales the Galactic magnetic field is not heavily tangled (B u/B r ≈ 0.7-1.0), that the field is generally parallel to the Galactic plane near the plane, that the local field points approximately along the local spiral arm (pitch angle 9.4°, center of curvature 7.8 kpc distant towards ℓ≈15.4;°), and that off the Galactic plane there is considerable small-scale structure to the field. Galactic synchrotron emission shows magnetic spiral arms with a total strength Bt ≈6 μG and B u ≈ 4 μG. Pulsar data show evidence for reversals of the field direction with Galactic radius and yield Br ≈ 5 μG and B u ≈ 1.5 μG; the morphology of the largescale mean field is consistent with dynamo generation. H I Zeeman detections for diffuse clouds yield B‖ ∼ 5;–20 μG with many limits B‖< 5 μG. A recent survey of Galactic H I in absorption against extragalactic sources confirms the result that the fields in diffuse clouds are often quite weak. The critical parameter for evaluating the importance of magnetic fields in star formation is the ratio of the mass to the magnetic flux, M/ΦB; observations focus on measuring both this quantity and the morphology of fields in dense regions. Zeeman observations of molecular lines are consistent with B ασv√n, which is the theoretical prediction for flattened cores supported by a combination of a uniform magnetic field pressure and turbulence. In cores, motions are approximately Alfvénic, and M/ΦB has a critical to slightly supercritical value. The ratio of B r/B u appears to decline with density. In some molecular cores there is evidence for the “hourglass” pinch that would be produced by cloud contraction with the magnetic field frozen into the matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Basu: ApJ 540, L103 (2000)

    Article  ADS  Google Scholar 

  2. R. Beck: Space Science Reviews 99, 243 (2001)

    Article  ADS  Google Scholar 

  3. T. L. Bourke, P. C. Myers, G. Robinson, A. R. Hyland: ApJ 554, 916 (2001)

    Article  ADS  Google Scholar 

  4. J. C. Brown, A. R. Taylor: ApJ 563, L31(2001)

    Article  ADS  Google Scholar 

  5. C. Chandler, J.E. Carlstrom: ApJ 466, 338 (1996)

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar, E. Fermi: ApJ 118, 113 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. E. Ciolek, S. Basu: ApJ 529, 925 (2000)

    Article  ADS  Google Scholar 

  8. R. M. Crutcher: ApJ 234, 881 (1979)

    Article  ADS  Google Scholar 

  9. R.M. Crutcher, T. H. Troland, A. A. Goodman, C. Heiles, I. Kazes, P. C. Myers: ApJ 407, 175 (1993)

    Article  ADS  Google Scholar 

  10. R. M. Crutcher, T. Troland, B. Lazare., G. Paubert, I. Kazes: ApJ 514, l121 (1999)

    Article  ADS  Google Scholar 

  11. R.M. Crutcher: ApJ 520, 706 (1999)

    Article  ADS  Google Scholar 

  12. R. M. Crutcher, T. H. Troland: ApJ 537, L139 (2000)

    Article  ADS  Google Scholar 

  13. J. Davis, J. L. Greenstein: ApJ 114, 206 (1951)

    Article  ADS  Google Scholar 

  14. B. Draine: ‘Electromagnetic Properties of Grains Related to Grain Alignment’. In: Polarimetry of the Interstellar Medium, A.S.P. Conference Series Volume 97, ed. By W.G. Roberge, D.C.B. Whittet(ASP, San Francisco 1996) pp. 16

    Google Scholar 

  15. J.D. Fiege, R.E. Pudritz: MNRAS 311, 85 (2000)

    Article  ADS  Google Scholar 

  16. J.D. Fiege, R.E. Pudritz: MNRAS 311, 105 (2000)

    Article  ADS  Google Scholar 

  17. T. Gold: Nature 169, 322 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Goldreich, N.D. Kylafis: ApJ 243, 75 (1981)

    Article  ADS  Google Scholar 

  19. A. A. Goodman, T. J. Jones, E.A. Lada, P. C. Lada: ApJ, 448, 748 (1995)

    Article  ADS  Google Scholar 

  20. J.L. Han, R.N. Manchester, E.M. Berkhuijsen, R. Beck: A &Ap, 322, 98 (1997)

    ADS  Google Scholar 

  21. J.L. Han, R.N. Manchester, G.J. Qiao: MNRAS 306, 371 (1999)

    Article  ADS  Google Scholar 

  22. J.L. Han: ‘Magnetic fields in our Galaxy: How much do we know? (II) Halo fields and the flobal field structure’. In: Astrophysical Polarized Backgrounds, American Institute of Physics Conference Proceedings 609, ed. by S. Cecchini, S. Cortiglioni, R. Sault, C. Sbarra (AIP, 2002), pp. 96

    Google Scholar 

  23. C. Heiles, W. T. Reach, B. Koo: ApJ, 466, 191 (1996)

    Article  ADS  Google Scholar 

  24. C. Heiles: ApJ, 462, 316 (1996)

    Article  ADS  Google Scholar 

  25. C. Heiles: ‘A Comprehensive View of the Galactic Magnetic Field, Especially near the Sun’. In: Polarimetry of the Interstellar Medium, A.S.P. Conference Series Volume 97, ed. By W.G. Roberge, D.C.B. Whittet (ASP, San Francisco 1996) pp. 457

    Google Scholar 

  26. C. Heiles: AJ, 119, 923 (2000)

    Article  ADS  Google Scholar 

  27. C. Heiles: PASP 113, 788 (2001)

    Google Scholar 

  28. C. Heiles: ApJ 551, L105 (2001)

    Article  ADS  Google Scholar 

  29. C. Heiles, T. Troland: to be submitted to ApJ (2002)

    Google Scholar 

  30. F. Heitsch, E.G. Zweibel, M.-M. MacLow, P.S. Li, M.L. Norman: ApJ 561, 800 (2001)

    Article  ADS  Google Scholar 

  31. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt: PASP, 112, 1215 (2000)

    Article  ADS  Google Scholar 

  32. C. Indranin, A.A. Deshpande: New Astronomy, 4, 33 (1998)

    Article  ADS  Google Scholar 

  33. N.D. Kylafis: ApJ 275, 135 (1983)

    Article  ADS  Google Scholar 

  34. S.-P. Lai, University of Illinois Ph.D. thesis (2001)

    Google Scholar 

  35. A. Lazarian: ‘Gold Alignment’. In: Polarimetry of the Interstellar Medium, A.S.P. Conference Series Volume 97, ed. By W.G. Roberge, D.C.B. Whittet (ASP, San Francisco 1996) pp. 433

    Google Scholar 

  36. A. Lazarian, A. A. Goodman, P. C. Myers: ApJ 490, 273 (1997)

    Article  ADS  Google Scholar 

  37. B. C. Matthews, C. D. Wilson, J. D. Fiege: ApJ 562, 400 (2001)

    Article  ADS  Google Scholar 

  38. C.F. McKee: ‘The Dynamical Structure and Evolution of Giant Molecular Clouds’. In: The Origin of Stars and Planetary Systems, ed. by C.J. Lada, N.D. Kylafis (Kluwer, Dordrecht 1999) pp. 29–66

    Google Scholar 

  39. C. F. McKee, E. G. Zweibel: ApJ 399, 551 (1992)

    Article  ADS  Google Scholar 

  40. T.Ch. Mouschovias, L. Spitzer, Jr.: ApJ 210, 326 (1976)

    Article  ADS  Google Scholar 

  41. T.Ch. Mouschovias, G.E. Ciolek: In: The Origin of Stars and Planetary Systems. ed. by C.J. Lada & N.D. Kylafis (Kluwer, Dordrecht 1999) pp. 305–340

    Google Scholar 

  42. P. Myers, A.A. Goodman: ApJ 329, 392 (1988)

    Article  ADS  Google Scholar 

  43. E.C. Ostriker, J.M. Stone, C.F. Gammie: ApJ 546, 980 (2001)

    Article  ADS  Google Scholar 

  44. P. Padoan, A. Goodman, B. T. Draine, M. Juvela, A. Nordlund, O. E. Rognvaldsson: ApJ 559, 1005 (2001)

    Article  ADS  Google Scholar 

  45. R. Rao, R. M. Crutcher, R. L., Plambeck, M. C. H. Wright: ApJ 502, L75 (1998)

    Article  ADS  Google Scholar 

  46. D.A. Schleuning: ApJ 493, 811 (1998)

    Article  ADS  Google Scholar 

  47. F.H. Shu, A. Allen, H. Shang, E.C. Ostriker, Z.-Y. Li: In: The Origin of Stars and Planetary Systems. ed. by C. J. Lada & N. D. Kylafis (Kluwer, Dordrecht 1999) pp. 193–226

    Google Scholar 

  48. T. H. Troland, R. M. Crutcher, A. A. Goodman, C. Heiles, I. Kazes, P. C. Myers: ApJ 471, 302 (1996)

    Article  ADS  Google Scholar 

  49. B. E. Turner, R. H. Gammon: ApJ 198, 71 (1975)

    Article  ADS  Google Scholar 

  50. J.M. Walawender, E.G. Zweibel, C. Heiles: ApJ, in preparation (2002)

    Google Scholar 

  51. W. D. Watson, D. S. Wiebe, R. M. Crutcher: ApJ 549, 377 (2001)

    Article  ADS  Google Scholar 

  52. D. S. Wiebe, W. D. Watson: ApJ 549, L115 (2001)

    Article  ADS  Google Scholar 

  53. D.A. Weintraub, A.A. Goodman, R.L. Akeson In ‘Protostars and Planets IV’. ed. V. Mannings, A.P. Boss & S.S. Russell (University of Arizona Press), in press

    Google Scholar 

  54. D. P. Woody, S. L. Scott, N. Z. Scoville, L. G. Mundy, A. I. Sargent, S. Padin, C. G. Tinney, C. D. Wilson: ApJ 337, L41 (1989)

    Article  ADS  Google Scholar 

  55. E.G. Zweibel, C. Heiles: Nature 385, 131 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crutcher, R., Heiles, C., Troland, T. (2003). Observations of Interstellar Magnetic Fields. In: Falgarone, E., Passot, T. (eds) Turbulence and Magnetic Fields in Astrophysics. Lecture Notes in Physics, vol 614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36238-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36238-X_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00274-1

  • Online ISBN: 978-3-540-36238-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics